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Partial differential equations are recognized as mathematical models that describe various physical
phenomena. Obtaining their numerical solutions accurately and efficiently is crucial for understanding
and predicting these phenomena. In computational engineering, in particular, there is a strong demand for
large-scale numerical computations to solve complex systems of equations with high precision. However,
on classical computers, performing operations on extremely large matrices associated with large-scale
numerical computations requires enormous memory and computation time. In this talk, we introduce
prospects for accelerating large-scale numerical computations, such as fluid dynamics simulations, using

quantum computing.
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