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Partial differential equations are recognized as mathematical models that describe various physical 
phenomena. Obtaining their numerical solutions accurately and efficiently is crucial for understanding 
and predicting these phenomena. In computational engineering, in particular, there is a strong demand for 
large-scale numerical computations to solve complex systems of equations with high precision. However, 
on classical computers, performing operations on extremely large matrices associated with large-scale 
numerical computations requires enormous memory and computation time. In this talk, we introduce 
prospects for accelerating large-scale numerical computations, such as fluid dynamics simulations, using 
quantum computing. 
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1． はじめに 
偏微分方程式は様々な物理現象を記述する数理モデル

として認識されています. その数値解を正しく且つ素早

く得ることは事象解明及び予測に役立ち, 極めて重要な

問題です. 特に, 計算工学においては, 高精度で複雑な

連立システムを解くため, 大規模数値計算を行う需要が

あります. 一方で, 古典コンピュータでは, 大規模数値

計算と伴う極めて大きな行列の演算を行うには膨大なメ

モリと計算時間が必要です. 本講演では, 量子コンピュ

ータの導入から、量子コンピュータを用いた流体シミュ

レーションなどの大規模数値計算を加速する展望を紹介

いたします.  

2． 量子コンピュータによる「指数的加速」 
量子コンピュータには, 量子ビットという概念があり, 

log!𝑁個の量子ビットで𝑁次元の広い状態空間を表現でき

ます．この指数的に少ない量子ビットに対する基本ゲー

ト演算が(ゲート式)量子コンピュータの操作単位となる

ため, 最良で古典の行列演算を指数的に加速することが

可能です. ただし, 自由度の観点からみると, 𝑁個のラ

ンダムな要素を持つ行列を表現するには, 原則的に量子

コンピュータであっても𝑁以上の基本ゲート演算が必須

です.  

流体シミュレーションなどの具体的な問題において, 

行列は数理モデルによる特別な構造を持つため, 効率良

く計算できることがあります. 以下, 流体計算のパーツ

と見なされる移流拡散方程式に対して, 古典計算より行

列サイズにおいて指数的加速の結果を示します。 

3． 計算例および主たる手法 
(1) 移流拡散反応方程式 

移流拡散反応方程式は温度, 物質濃度などの物理量の

時間変化を記述する数理モデルで流体計算の一部と見な

すことができます. 数式上, 以下のように, 空間に関し

て2階微分(拡散項), 1階微分(移流項)と0階微分(反応

項)を有し, それぞれ物理量の空間における広がり, 移

動, 増減を表しております. 

 

𝜕"𝑢 − 𝑎∇!𝑢 +	 𝑣⃗ ∙ ∇𝑢 + 𝑉𝑢 = 0 (1) 

 

(2) 確率的虚時間発展(PITE) 

時間発展方程式は, 行列の虚時間発展(指数関数の行

列冪演算)を用いて解くことが知られています. 量子コ

ンピュータでは, 補助ビットを導入して虚時間発展演算

のような非ユニタリ演算を実現することができます. 本

講演では, 確率的虚時間発展法（PITE）の量子回路を用

いることにより, 指数的な加速を達成できることを紹介

します.  

4． 結果 
(1) 行列サイズに対する指数的加速 

共役勾配法などの典型的な古典アルゴリズムでは, 計

算時間は行列サイズ𝑁に比例します. 一方で, 前述の

PITEを用いる量子アルゴリズムの計算時間は量子回路の

深さに比例してlog!𝑁の多項式となります. 量子加速の

イメージは図-1に示されています. 現在の量子コンピュ

ータのゲート実行時間が長いため, 量子計算の前因子が
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古典計算と比べて大変大きく, 十分大きな行列に対して

量子優位性が言えます.  

 

 
 
(2) 数値計算例 

以下は, 移流拡散反応方程式に対して, Qiskitという

ゲート式量子シミュレーターを用いて量子エラーなしの

数値シミュレーションを行う結果です.  

空間2次元で, 拡散と移流係数をそれぞれ𝑎 = 0.5と𝑣⃗ =
(20, 0)に設定しております. また, 領域は辺長2𝜋の正方

形とし, 領域中心に吸収する反応項を設けます. 図-2は

時刻ごとに数値解をプロットするもので, ただし, 初期

値は左下の点にピークを持つガウス関数を取っています.  

 

 

 

図-2においては, 横軸と縦軸は空間のXとY座標を表し, 

数値解をカラーマップでプロットしております. 予想通

りに, X方向における移流現象と領域中心部を通過する

際の吸収現象が見られています. 誤差プロットなどの詳

細は, 論文[1]に記載してあります.  

 

5． 考察 

(1) 古典アルゴリズムと量子アルゴリズムとの比較 

偏微分方程式を解く際に, 汎用的な手法は, 方程式を

離散化して, その離散化した線型方程式を解くものです. 

代表的な手法として, 古典線型方程式ソルバーの共役勾

配法(CG法)[2]と量子線型方程式ソルバーのQLSA[3,4]が

挙げられます. 実用上, 数値計算の精度も重要な指標で

はありますが, ここでは行列サイズに注目して手法ごと

に計算時間のオーダーを表-1にまとめております. 

 

 

 
ここで, 𝑑は空間次元数で, 𝜅は行列条件数です. 流体計

算を含む偏微分方程式を解く問題において, 一般的に量

子計算法(QLSA)は大きな次元数に対して多項式的加速を

達成できます. ただし, 適切な前処理ができる仮定の下

で, 最良でPITE法と同様に, 指数的加速を達成すること

もあります.  

(2) 連立微分方程式への展開 

𝑀個の微分方程式からなる連立方程式に対して, 量子

計算においては, 新たにlog!𝑀個の量子ビットを追加す

ることで, 原理上で計算が可能です. 従って, 量子計算

は連立方程式の個数に対しても最良で指数的に加速でき

ます.  

また, 効率良く量子状態を取得できれば, 時間軸を十

分に細かく刻んで, バーガース方程式を含む非線型微分

方程式を取り扱うことが可能です[1].  

6． 結論 

本講演では, 流体計算の一種でもある移流拡散反応方

程式を計算例として, 大きな行列演算の部分における量

子コンピュータでの加速を示しました. 汎用的な手法で

ある量子線型方程式ソルバー(QLSA)を使用すれば, 古典

のCG法より, 多項式的な加速を成し遂げます. また, 効
率良い前処理が行える, 或いはPITE法のような効率的な

手法を使える良い問題設定において, 量子コンピュータ

は最良で指数的な加速を達成できます.  
一方で, 流体計算や構造計算などのCAE解析からきた

複雑な非線型方程式に対して, 量子アルゴリズムのサブ

ルーチンである行列のブロックエンコーディングの効率

良い構成法と, 量子アルゴリズムの共通な課題である量

子状態の効率良い取得法と, この二点に関して更なる検

討が必要です.  

 

7． 謝辞 

 本研究は、日本学術振興会科学研究費助成事業（JSPS 

KAKENHI）14K04553、20H00340、22H01517の助成を受けて

実施されました。本研究の一部は、JST 課題番号 

JPMJPF2221「Sustainable Quantum AI (SQAI)イノベーシ

ョン拠点」の支援を受けて実施されました。なお、本研究

の一部については、東京大学物性研究所スーパーコンピ

ュータを利用いたしました。 

 
参考文献 

 
 

図-1 量子計算による加速のイメージ 

 

図-2 二次元吸収項ありのシミュレーション 

表-1 古典と量子との計算時間の比較 

 線型方程式 移流拡散方程式 
CG法[2] 𝑂(√𝜅𝑁) 𝑂(𝑁($%&)/$) 

QLSA[3,4] 𝑂(𝜅polylog𝑁) 𝑂(𝑁!/$polylog𝑁) 
PITE法[1] / 𝑂(polylog𝑁) 
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