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The s-version of the finite element method is a discretization technique that superimposes multiple meshes

with different resolutions. The authors have previously proposed a B-spline-based s-version method that im-

proves the accuracy of numerical integration and the convergence for solving linear equations. In this study,

the method is extended to incompressible viscous flow analysis, demonstrating that localized high-accuracy
computation can also be achieved in fluid simulations. The performance of the method was validated through

several test cases using a three-dimensional fluid solver.
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AV NS 2R, [LEIRERE - T8I
BOTEBNFETH S, PCh, EHIETDTIAEES)
WRIE T R SR D ORI, 2 DORUBENC L E 7%
FIETHNTT 2 2 23D TEETH S, TDO LI RE
FEICA L, IFRICRIRICEERREB L UFHEX vy > 2%
T = 2 HIRELZETE (FEM: finite element method) 13,
FICENRFEO—2 e LTI HWLRTWS. f
RERFICBWTER 2O X ¥ — 213, FHEEBHE
SRR KAl S 5. FEEPE R ¥ — 4TI,
Arbitrary Lagrangian-Eulerian (ALE) {% [1] %° deforming-
spatial-domain/stabilized space-time (DSD/SST)[2] @ &
T, WMARTEHRD X v & 2 2 HERBIRICGES S8 TE
JBEE2Z T, REzlniNSGERRS 2 FESHW
b5, FEZEIT 2 X5 CHEX Y 22 AR
B, HEEREEKICb o TRy ¥ 2 ORGE LIS 2
T, TERCEEREFEMNEICBWTEREER
fRE132 Z LD AIREL 725 [3,4]. —F5T, AR - HER
TE5RX vy anIEFEICEHCRD 5570, @E,D
FHEIZX POEWR Y > 2 ERL - SIEEN 2 E T 55
AR, BHENEANZEN 2 RTHENHS. 251k
HREZRT 272012, FHEMIRER X —203H0S
N5V, ZOFETE, FHEHIIERS
N7z Buler BIO[EE R v & 2 FIZBWT, A e52
LRGN 2B TG ZRIT 5. KENR
FEY LT, Peskin IZ & % immersed boundary i [5]
JEARAFREIZRE (XFEM: extended FEM)[6]. F FRU7E %

(FCM: finite cover method)[7] 72 ¥ MZEIF 65N 5. Th
B, X v 2R - Sl E X SRR IS
ZEMENRZEEOB RS, HHERBIRP R ERGER
25 ZRZSHICE L TWa. — /T, St
HRIZ X — ATIE, X v a ORBER RTINS
WCHIEIS 2 Z e MR LTHREETH 2 2 v 5 FRED
5. ZoXInRmERERORNEEX Z5RT 5729,
AIFETIX, BHEA X v > 27k (SFEM: s-version of finite
element method)[8] IZEH T 5.

HERA v ¥ alkild, ARERFEOMHAIZBVTHE
BEDBRLZAZEHDORA Yy > 2 2FEICERS Z 2T
REMRLL, RTERGBEEHE X V2@ T 5
FIETH 5. BIEBEEKIE g — "L Xy 2 b
BNAHN Ry > a2 TREIN, RN RREEE RO
EEICIEO — AL Xy ¥ 2 LI D EET X v > ah
HhRhoN, RIZEREDINZX Yy ¥ 2 DM TREX
N, Fh, m—Hl Xyl —oUL Xy al
Y L TR O RFTEBICHEAT 2 e 3 TE 57
b, B Y > 2B - DEIFIEZ EET 25 2 2
TE, AoV I/OfEXBHEBATES. ZLHDFH]
M, EAX vy Y akli I E CREESHE O
JIFRHT [9]~[12] R EEEMNT [13]~[16] 7% & ZhR7 S
MBS SN TE =, — T, 1ERDEAX Y
¥ aikid, BUEREDRERE (8,13,14] & ATAIRHRICHBIT 2
ISR [8,10,15,17] WCERREED B o 7=, ZHSHFREDIRA
BB FRIRD T8, T E TEHE &1 B-spline ZEBE Y
Lagrange FSERAR DM /7 Z & A L 7z B-spline HE X v
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Global mesh QO

Local mesh Q"

rL

E-1 Global and local meshes defined in SFEM.

YaREREL, SEELB X CIGRED KIERME L
BERLTER. FICOWTIISZHN[18,19] 2R X
iz,

AR e BYD, KRATLE, TRIKENTICEIF 5 Buler B!
DFEHIEA v 21t L, EAX v ¥ ke iR,
TEORFEBICA —HILXy > a%2BRD LT,
FTEfRECDERZRASL. KERIIZOE S L
T, TNETIZEEODPHEL TE 7 B-spline EG X v
¥ AR B TRIAET A HERINCHR S5 DTH B, Z
NIFEHESOHIBRDEERA v aiE7 LV —0T—7
PR ACICH L7200 ATH 5. AWK TIE,
3 RICIEEMEIERE TR RTE 2 0tk & U, SRR 72
BlEFHWTZORBELZMRIEL, HEX v ¥ 2EOWK
BIEAOEHAMEIC O WTHETT 3.

2. B-spline EFXv>aik

ARETIE, EERX v ¥ 2OV THEE L 7%, &5
5B EMFITBWTIRE LT Z 7z B-spline HE X v
¥ 2RI DOWTIRN 3. B-spline A X v & 27D
WIZOWTIX, SCHK[18,19] SR X7z,

HEA vy Y 2iklX, K-1 DX IMREDRL 28
BORXy Y 22BRTNREZHEILT 2FETHS. K
XTI 2 DX v ¥ 2 2 FHWTHERIL S 5. MR
KA Q WAL, Bl (Fae— UL Q) %
HHRUL T 2 X v vaZa—NL Xy > a, @
I (7 — A EEQN) ZREBUCEER T A X v a
ZH—NRA YT a bR HEX v ¥ 2iKIIBVT,
YrFRZe i o BIEUR ¢ (x) 133X (1) TRINS.

¢% (x) inQH\QF
= 1
M”{Wun&@>mm W

p9 () = D NT ()97, Ph(0) = ) NF(x) g}
i J

P (x) BIU gt (x) ZZzhZznrm— N Xy >a,
0D—ANRXyyalZBYRBB@ETHD, Fa—
RXyara—AIL Ry ap®Eiba—hVER QL
TOfRIX, Za— oL Xy Y28 288Ry, n—
TR w2 2B BEBEOMTRHEING. £,
BHX vy aDBBREIEh ZNAREZREKBEIC &
DEERULE R, & X v P 2 DREMBITERE AT
WERINDG. Z7a— L Q6 OFER 1061213,
Ptk Q ISR X N 2 5 ¢ Rl — DR 23R T
T/, o—A MK QN oBER TV e LT BT
DREEIE ¢ (x) DHERMERRAET 572, K (2) THX
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— Istorder —— 2ndorder —— 3rd order

element element element

-2 Linear, quadratic, and cubic Lagrange basis functions.

— 2nd order — 3rd order

1

element element element element
E-3 Quadratic and cubic B-spline basis functions for uni-

form knot vectors.

1% Dirichlet BEFR&M %71
S (x)=0 onl* (2)

MR E T XA EPRETDH 255, K (1), (2)
Z, XEARRXOEAT EERAFERARATEZL
T, AREZE—XGER Q) »EHINS.

KGG KGL ¢G G

[KLG KLL} [¢L} = [fL} 3)
XB)EBWT, MIEXFG LIFzhzh T a— L
Xyva, B—ANXy 2 lZBEHTZ e ERT. 1T
H| KOS, K'h i3 zhzihra—or Xy yaBliin—
TRy 2 TERINDIEROFIREREDREATH
YRE—THB. —Fh, T K KCiZ2o0X v a
OMHEMERZRL, HREBEZIIE NG (x) & NE(x) D
WA EEND.

FH O HPWMENIL [18,19] KBV TREL TE/: B-
spline S X v > 2k TIE, 7B — UL X v ¥ 21T B-
spline ZLEBEEE A L, v — A1 X v > 21T Lagrange
HEBEEEA T 5. IR TlE, Lagrange FEREHE
& O B-spline & EREICOWTHELT 5.

%9, Lagrange FEBIBEZMF T 5. K-21T1 XK,
2 R, 3 XD Lagrange KB O —HlZ/RLTW5. 1
TOCDIFIHE S Q¢ 1281 % Lagrange fifIBE0I 4)
ThHzoh3.

) p+1 g_._é_:j

(&) = 2>

l (f) j—ll_,j[;éi §i—¢&j

TIZT, i=12,...,p+1 ZEENEEES, p I

BOIE, EFIFRTRBE, & (XM i OIFHESRE

BETHb. £, BRNOHIABIE p+1ETHD, IE

HEE Q ORXMD [-1,1] TERZINZZ DD —1 =

& <éd <&, =1%7%%. pXROD Lagrange HLJKR
B, p RO Lagrange fHEPIRL 1 2 SRS N 5.

JRIZ, B-spline FLEEUCOWTHIAT 3. X-3 12,

J v MEDB—FEA /v bRT ML TERING 2 KB

“)
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& 8 3 XD B-spline BERIEZ R L TV 5. B-spline 5
JERIEUE 7 v P RY PSR o TERSNS. 1 XTTD
v IRZMLVERRG) TRENS LI, NTX—
RZENC B 2 AR DIEBP BREETH 5.

Ez{fl’f%n-’gnk}T (5)

ZOLE LEeRWBIFBHD /v b, i3/ v bRI B
WDy bOETHD n =n.+p+1 REINDB. pld
B-spline &EBAELDREL, n. 1& B-spline ZJERAE DK
THb. Gabhi/ v FRZ P LT, B-spline
FIEBIBUE 0 RORXITER T E 20kl L TER
ENhd. KpEBOBEDEREK (6) 1ITRT.

1 i < i+
Ni,o@):{ @ <& <gim) ©)

0 (otherwise)

K p = 1,2,3,... IZBWVWT, X7 X MY v 27X
(&, &ivpr1] TEFESNS p X B-spline FLEFIEL N, ()
1%, Cox—de Boor DH#i{t (7) TREN 3.

&-§

Nl‘ = N,' —
PO =g Nip-1 ©
§i+p+l - é:
————Nis1p- 7
" §i+p+1 _§i+1 bl (é:) ( )
B-spline BEBIE D —FEMMEIZK 8) THA SN S.
d P .
ENi,p (g) ——é:Hp — gi Nl,p—l (é:)
p
- N 8
§i+p+1 - §i+1 bp] (f) ( )

BRIIMERR S /v FOXHE e L TERSNS. B-spline
HEEMBEHWAAERERED, HHllRGRERE
ERBRICT A YRS X MY v ZEEDEAFRETH D,
BATEIR b REEF BRI B-spline Z RO RIEHES
TRRINS. BOTEIRZHEUL L ARG o 2518
RiFay ba—RA > b eI sh, 20553
V= LKA Y MERATEIRORENIIFZE LRV,
FITARETIE, 2> ba—EA v MEEEZRD 3
72812, Otoguro et al. [20] D X v ¥ 2 £ FIEE A
L7z, B8, WINOREREBICBWTY, 2087
X NV ZREREBE, 10087 X MY v 7 BKBEE
DT VINEE LTERIND. £z, AT TIEA—
Ty MR MR LTED, B-spline A ERIEL
VX D i C R 272 3. —77 T, B-spline £
JEBEIBUIAERD /v b TR 2 72 X vz,
AWFFETlX Dirichlet R UCE T 2 a > b — LKA »
MEZER L LT, Dirichlet BEFGM2HT. —fic,
p X B-spline L%, NEE/, v b & TEREIND
BZERT p—m ROHEHMEEFD., m i/ v &I
BIL/ v rOEZEETHL. AFFKTIE, TXRTOD
NEBERFFICB W T crl i 25 £ 5, £2TONR
v FVCBWTZEEY 1 35, [ERBESGX
¥ 2 IROBYERTITBY 28EIE, 7n— OVEEEEL
DBEZHEFICBI 2 Et BRI BERTH 7. L
7235 T, 3 RPLED B-spline ZJERHE % 7m0 — L5
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JEBIBUCE 3 2 2 & T, EERBEKE 20— Mo E
NEZRERCHEftr Ol oD, BEEIHEED
M EEH N [19]. £z, ERBEE X v ¥ 2k
DHS—DODHETH o7, FX v a2 DREBEMD
MM EOERIE, ZJa— A Xy Taktr—h
A v ¥ 2 DM /512 Lagrange BB 2 3 5 72012
BT LMETHS. £ T B-spline EH X v ¥ aikT
X, Z7’'r— LEJKEEBUC B-spline ZEEE Y, 1n—
HNVFERBUC Lagrange 2K Z#A % Z & T,
FLEREELE T ORI M 2 R D L EE M RE % A58 U 72
[19]. Za— UL Xy ¥ aSEERTFTH 5 20D HiE
ZHHRD. 2B, AW, MG TE V2 R
BOFIRIB W TRFTE MG 2 EI S % 720 OB
BEOMBESFTH Y, Fa— LRy > 2 3SR
FTH2ZLZiiEr 35.

3. B-spline EG X WS 1 ZDRISEIEADER

TR D ZEMGE %, R4l e (0,T) I2BWTT DR
ZFO QR 2§ 5. IEEMIERSERIA D AL R
LU FIZR$ Navier—stokes AR EiiOR 2 72 5.

P(Z_I:ervu—f)_v'o':() onQVte (0,T) (9a)

V.u=0 onQVre(0,T) (9b)

ZIT, p, u, fIFEhZENEE, R#, H1THD,
o EXRITRTIENT VY VTH 5.

o (u,p)=—pl +2ueu) (10)
1 T
sw)=§Wu+Wt) (11)
22T p 3, wldMERE, HIHAT YL, el

O3 AHEET VYV ILTH5. Dirichlet B X X Neumann
BREEREIRTREINS.

u=g onl, (12)
on=h onT, (13)

T, e B OHERIGTOM TR EM 2 S, ¥
S, ELRDESITERT 5.

S.=lulune(H @) ,u=gonT, (14)
‘gzuﬂpoeL%mlfde=0ﬁr=Q}(w)
Q

S, & S, IZ&DHET, Navier-stokes T2 & @D
ERTEABEBZEMEZ V, &V, ELUTD XS TE
£735.

Vi=wiwOe(H' @) . w=0onT,}  (16)
Vyp =S (17

INSDHERICH U TEANEREEEZHEAL, i
HizBIF 2BIMEIC X 2 AL EMW L IEEMmEISHEDE
RIS 2L EMZERES 572912, Streamline-
Upwind/Petrov-Galerkin (SUPG) ZZiE1t: [21] & Pressure-
Stabilizing/Petrov-Galerkin (PSPG) &t [22] Fik% &
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AT 2L, XX (18) hEMINS,

fw'p(a—u+u'Vu—f) dQ+fs(w):0'(u,p) dQ
Q ot Q

—fw-hdl"+qu-udQ
T Q

# 3 [ rsure @) s p) a2

\Y
+ZL TPSPG(?Q)"‘M(MP) dQ =0 (18)

Z 2T ry & Navier-stokes SO ZETH b (19)
DEIITREINS.

rM(u,p)=p(aa—l;+u'Vu—f)—V~tr(u,p) 19)
ﬁﬁzli?ﬂiiifﬂi, TSUPS = TSUPG = TPSPG }: L J;{—FOD

TN T A =R EAVWE., ZZTh 3EEY AT
D, Re % Reynolds ?ﬁt?‘é.

2V (2l 4V -3
(A_t) +( e ) +(Re(he)2) 20

A (18) ¥ (19) ZEH L XA =155,

Tsups =

aq (w,u) + bg (w,u, p) +cq(q,u) +do (w,q,u, p)

= Lo W)+ Ma(w,q) (21)
ag(w,u)sz~p(a—u +u'Vu) dQ 22)
I ot
bo (w,u, p) = fs(w) o (u,p) dQ 23)
Q
cal(q,u) = quou dQ 24)
Q
\Y
dow.q.u,p) = ) fg Tsups (u VW + 7") (25)

ou
{p(Em.Vu)—V.a(u,p)}dQ
LQ(w)sz-pfdQ—fw-hdF (26)
Q I
\
Mo w,q) = fg Tsups (u-Vw+7")(—pf> aQ (27)

HAX Yy Y aiRiZB0T, EYHERUTDO X511
KE 5.

uS in QO \ QL 28)
u =
uS +ut in QL
G 200\ OL
p° inQ°%\ Q-
={ G, L : oL (29)
p >+ p- inQ-.

JRFTEIEE S T 128 W T, RFEESE BT 2 fFD
et 2 (RALS 5 LU N DS 23RS

ut =0, p“=0 onTh, (30)
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HAEBDYHEB LRI, Za—\LXvPa kD
fra—HhAlXyyalbOEOME LTERINS.

_ w9 inQf\Qh
V= wS +wl  in QL. G
G 200\ OL
g” in QY \ QF,
={ G, L i oL (32)
q° +q- inQ-.

sz (22) 26K Q7)) WA LEHT 2 L IO
Ao Nns.

ag (w,u) = agc (wG,uG) + aqL (wG u )

+aou (wL, uS) + ag ( ) (33)
ba W,u, p) = bao (wG G G) + bt (wG ub, pL)
+ b (WhuC, p9) + bou (wh,u®, pt) (34)

ca(q,u) = cqo (qG, uG) + cqL (q u )
+cqu (7" u) + car (¢".u") (35)

dQ(w,q,lhp):dQG ’un 7p )

G G L,pL)

(w
+dQL( ,q U

(w

(v

+dg L’qL uC, G)
+dg (W, q", u", p*) (36)
Lo W) = Loo (wF) + Lox (w") (37)
Mo (w,q) = Moo (w%,¢%) + Mox (W".¢") (38

RO DES1, AT u,p BIXUEABRE w,q %
Ta—r Ry s 2 BEBBNG A e nS - -
ANA > 2 FIEBE NY, A € gt 12 & D BIRZERBER
55, &8 g% g g8 idzhzhsm— ULEER
MDA >Ty 7 2EE, a—ALVEEBEBOA Ty
728G, 7a— OVEEBEE DA Dirichlet 3544
WHEE S 2 KO > Ty 7 2EETHD, g i
Dirichlet 3255 (12) 2 BB EZRBERIL L 7=H DT
H5.

uh = ) Nyl (39)

AenS-ig Aen*

PO~ D NG Pl Y Nipk (40)
AenS—n Aent

wl= > Now§, wh= ) Npwy (41)
AenS—§ Aen“

= > Nid§, "~ ) Nidi  (42)

AenS— Aenl

IhsER QD) BLUR 33) 22563 (38) ITfRALE
32y, DIRD X512 3) IR E N8N —RG5
ﬁﬁﬁ%ﬂé.tk,::f@l%ﬁ%tb®§mﬁ
ﬁmwﬁﬁ3ﬁ JEH 1 EG) o7 ay 2175%%E

IR 7 kﬁﬁ?%%ﬂ«&bw@anLm%
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K¢ = [K§91, (43)
K$S = age (NGe,-,N eJ) + boo ( e, Ngej, NG)

+ cqo (NA,N ej)+dgo( e,,NS,NGe,,NG) (44)

GL = [Kk$EL, (45)
K A5 = doL (NGel, N},?ej) + bqL (N/f’ei,N},?ej, NL)

+coL (NA ,NBe]) +doL ( e;, NS, Nge,, NL) (46)
K“S = [K}91, (47)
Ky = aq (Nyei, Nge;) + bo. (Niei, Nge;. N§)

+ cqu (N§. Nge;) + dou (Niei. Ny, Nge; N ) (48)

Lk = K55, (49)
KL]B? =agq. (NI;e,,NBeI) + baor ( Ae,,NII;eJ,NL)

+ cqu (NK. N5e;) + dox (Nkei, N, N5ej, N5)  (50)
=10 &)
f9 = Las (NSe;) + Moo (NSei, N

— aqs (Ngei, g") - bas (Ngei. g", N§)

— cao (NS, £") - doo (NJei, NS, &', N§)  (52)
fr=1 (53)
i = Lo (Nyei) + Mo (Nyei. Nf)

—agL (Nf;e,-, g ) bQL( Lei, g NG)

- CcoL (N};, gh) dor ( iei, Nk, g NG) 54)
9° = {45}, (55)
o- = (o5, (56)

A O—HIZ [19] 125, BRI T, KBS
A DBEREIZ Crank-Nicolson 1%, I E OIS
2 X Adams-Bashforth iEZ £ L 7=.

4. ZEHMRES SUBIEFTEN
REFEZ SRR, HEFERICTHT
55.

5. ¥&E

AT, TAROGEFYEMEIC 3B 2 FHife s
77a—FIIH L, RpEEE R BT 5 TR T
RRT2HDTHL. KRERBZZOERNDAT v T L
T, A7 7a—FOHM L 72 % B-spline A X v ¥ 2ik
DI ANDILRZITV, EEX v ¥ a7 L — L4
T =212 & D RPN EREE(LRTRETH 5 Z e IR L 7.
SHROWMH AL LTIE, RETORMZEEZRS /-
® @ Nitsche {EDEA R, BEIRAE L BT 57200
0 —#)L Xy 21203 % arbitrary Lagrangian—Eulerian
(ALE) 2% — L DEAR{TS
B EE: ARWEZEIE, IST BIFEMBFZE R F ¥ IP-
MIJFR215S, JST ACT-X JPMJAX24LG, JSPS Flif %
23H00475, JSPS R & 24KJ0499, “FFE KIS HREE

REIL[E R - LA AFZEHLA. (JHPCN) jh240017 D 2%
BRI DOTHE. TIIWCHLTHEEZRT 3.
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