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B-spline重合メッシュ法を用いた
非圧縮性粘性流体解析手法の開発と評価

Development and Validation of B-spline S-version of Finite Element Method
for Incompressible Flow Analysis
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The s-version of the finite element method is a discretization technique that superimposes multiple meshes
with different resolutions. The authors have previously proposed a B-spline-based s-version method that im-
proves the accuracy of numerical integration and the convergence for solving linear equations. In this study,
the method is extended to incompressible viscous flow analysis, demonstrating that localized high-accuracy
computation can also be achieved in fluid simulations. The performance of the method was validated through
several test cases using a three-dimensional fluid solver.
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1. 序論

流れ場に対する数値解析は，広範な科学・工学分野に
おいて基盤的手法である．中でも，複雑境界が流体挙動
に及ぼす影響を高精度かつ効率的，かつ数値的に安定な
手法で解析することは極めて重要である．このような要
請に対し，非常に柔軟に基底関数および計算メッシュを
構築できる有限要素法 (FEM: finite element method)は，
特に有効な手法の一つとして広く用いられている．有
限要素法において境界を扱うスキームは，界面追跡型
と界面捕捉型に大別される．界面追跡型スキームでは，
Arbitrary Lagrangian-Eulerian (ALE)法 [1]や deforming-
spatial-domain/stabilized space–time (DSD/SST)[2] のよ
うに，流体領域のメッシュを境界形状に適合させて変
形させることで，界面を明示的に追跡する手法が用い
られる．界面を追跡するように流体メッシュを変形さ
せ，領域全体にわたってメッシュの解像度を制御する
ことで，工学的に重要な境界層付近において高精度な
解を得ることが可能となる [3,4]．一方で，生成・維持
するメッシュが非常に複雑になりうるため，高度かつ
計算コストの高いメッシュ生成・制御技術を要する場
合や，数値的な不安定性を示す場合がある．こうした
課題を克服するために，界面捕捉型スキームが用いら
れることが多い．この手法では，界面と独立に定義さ
れた Euler型の固定メッシュ上において，外部から与え
られた境界条件を通じて流れ場を表現する．代表的な
手法として，Peskinによる immersed boundary法 [5]や
拡張有限要素法 (XFEM: extended FEM)[6]、有限被覆法

(FCM: finite cover method)[7]などが挙げられる．これ
らは，メッシュ生成・制御の簡便さや複雑境界に対す
る数値的安定性の観点から，複雑な形状や大きな境界
変動を伴う多様な応用に適している．一方で，界面捕
捉型スキームでは，メッシュの解像度を局所的に柔軟
に制御することが依然として困難であるという課題が
残る．このような局所高解像の困難さを克服するため，
本研究では，重合メッシュ法 (SFEM: s-version of finite
element method)[8]に着目する．

重合メッシュ法は，有限要素法の枠組みにおいて解
像度の異なる複数のメッシュを任意に重ねることで対
象を離散化し，局所高解像と低計算コストを両立する
手法である．解析領域全体はグローバルメッシュと呼
ばれる粗いメッシュで表現され，局所的な特徴を持つ
領域にはローカルメッシュと呼ばれる詳細なメッシュが
重ねられ，解は重ね合わされたメッシュの和で表現さ
れる．また，ローカルメッシュはグローバルメッシュと
は独立して任意の局所領域に挿入することができるた
め，複雑なメッシュ生成・分割手順を回避することが
でき，メッシングの簡便さも実現できる．これらの利
点故に，重合メッシュ法はこれまで積層複合材料の応
力解析 [9]～[12] や亀裂解析 [13]～[16] など多様な構造
力学問題に応用されてきた．一方で，従来の重合メッ
シュ法は，数値積分精度 [8,13,14]と行列計算における
収束性 [8,10,15,17]に課題があった．これら課題の根本
的な解決のため，これまで著者らは B-spline基底関数と
Lagrange基底関数の両方を導入した B-spline重合メッ
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図–1 Global and local meshes defined in SFEM.

シュ法を提案し，高精度化および収束性の大幅な向上
を達成してきた．詳細については文献 [18,19]を参照さ
れたい．
前述のとおり，本研究は，流体解析における Euler型
の界面捕捉メッシュに対し，重合メッシュ法を基盤に，
任意の局所領域にローカルメッシュを重ねることで，局
所高精度化の実現を試みる．本発表はその第一歩とし
て，これまでに著者らが構築してきたB-spline重合メッ
シュ法を流体解析へと理論的に拡張するものである．こ
れは著者らの知る限り重合メッシュ法フレームワーク
を流体解析へと応用した初の試みである．本研究では，
3次元非圧縮性粘性流体問題を対象とし，典型的な解析
例を用いてその精度を検証し，重合メッシュ法の流体
問題への適用性について検討する．

2. B-spline重合メッシュ法
本章では，重合メッシュ法について概説した後，筆者
らが過去研究において提案してきた B-spline 重合メッ
シュ法について述べる．B-spline重合メッシュ法の詳細
については，文献 [18,19]を参照されたい．
重合メッシュ法は，図–1のように解像度の異なる複
数のメッシュを重ねて対象を離散化する手法である．本
論文では 2枚のメッシュを用いて離散化する．解析対
象領域 Ω に対し，領域全体（グローバル領域 ΩG）を
粗く離散化するメッシュをグローバルメッシュ，局所
領域（ローカル領域 ΩL）を精緻に離散化するメッシュ
をローカルメッシュと呼ぶ．重合メッシュ法において，
物理空間上の関数解 ϕ (x)は式 (1)で表される．

ϕ (x) =

ϕG (x) in ΩG\ΩL

ϕG (x) + ϕL (x) in ΩL
(1)

ϕG (x) ≃
∑

i

NG
i (x)ϕG

i , ϕ
L (x) ≃

∑
j

NL
j (x)ϕL

j

ϕG (x) および ϕL (x) はそれぞれグローバルメッシュ，
ローカルメッシュにおける関数解であり，グローバル
メッシュとローカルメッシュが重なるローカル領域 ΩL

での解は，グローバルメッシュにおける関数解と，ロー
カルメッシュにおける関数解の和で表現される．また，
各メッシュの関数解はそれぞれ有限要素基底関数によ
り離散化され，各メッシュの基底関数はそれぞれ独立
に定義される．グローバル領域 ΩG の境界 ΓG には，解
析領域 Ωに課される境界条件と同一の境界条件を課す．
また，ローカル領域 ΩL の境界 ΓL に対しては ΓL 上で
の関数解 ϕ (x)の連続性を保証するため，式 (2)で表さ

図–2 Linear, quadratic, and cubic Lagrange basis functions.

図–3 Quadratic and cubic B-spline basis functions for uni-
form knot vectors.

れる Dirichlet境界条件を課す．

ϕL (x) = 0 on ΓL (2)

対象とする支配方程式が線形である場合，式 (1), (2)
を，支配方程式の重み付き残差方程式に代入すること
で，解くべき連立一次方程式 (3)が導出される．[

KGG KGL

KLG KLL

] [
ϕG

ϕL

]
=

[
f G

f L

]
(3)

式 (3)において，上付き文字G, Lはそれぞれグローバル
メッシュ，ローカルメッシュに関連することを示す．行
列 KGG, KLLはそれぞれグローバルメッシュおよびロー
カルメッシュで定義される従来の有限要素法の係数行列
と同一である．一方，行列 KGL, KLGは 2つのメッシュ
の相互作用を表し，被積分関数には NG (x)と NL (x)の
両方が含まれる．
筆者らが過去研究 [18,19]において提案してきた B-

spline 重合メッシュ法では，グローバルメッシュに B-
spline基底関数を適用し，ローカルメッシュに Lagrange
基底関数を適用する．以下では，Lagrange基底関数お
よび B-spline基底関数について概説する．
まず， Lagrange基底関数を概説する．図–2に 1次,

2次, 3次の Lagrange基底関数の一例を示している．1
次元の正規要素 Ω̃eにおける Lagrange補間関数は式 (4)
で与えられる．

lp
i

(
ξ̂
)
=

p+1∏
j=1, j,i

ξ̂ − ξ̂ j

ξ̂i − ξ̂ j
(4)

ここで，i = 1, 2, . . . , p + 1 は要素内基底番号，p は関
数の次数，ξ̂は正規要素座標，ξ̂iは節点 iの正規要素座
標である．また，要素内の節点数は p+ 1個であり，正
規要素 Ω̃eの区間が [−1, 1]で定義されることから −1 =
ξ̂1 ≤ ξ̂2 · · · ≤ ξ̂p+1 = 1 となる．p次の Lagrange基底関
数は，p次の Lagrange補間関数 lp

i から構成される．
次に，B-spline基底関数について説明する．図–3に，
ノット幅が一様なノットベクトルで定義される 2次お
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よび 3次の B-spline基底関数を示している．B-spline基
底関数はノットベクトルによって定義される．1次元の
ノットベクトルΞは式 (5)で表されるように，パラメー
タ空間における座標の非減少な集合である．

Ξ =
{
ξ1, ξ2, . . . , ξnk

}T (5)

このとき，ξi ∈ Rは i番目のノット，nk はノットベクト
ル中のノットの数であり nk = nc+p+1と表される．pは
B-spline基底関数の次数，nc は B-spline基底関数の数
である．与えられたノットベクトルに対して，B-spline
基底関数は 0次の区分定数で始まる漸化式として定義
される．区分定数の関数の定義を式 (6)に示す．

Ni,0 (ξ) =

1 (ξi ≤ ξ < ξi+1)

0 (otherwise)
(6)

次数 p = 1, 2, 3, . . . において，パラメトリック区間
[ξi, ξi+p+1] で定義される p 次 B-spline基底関数 Ni,p (ξ)
は， Cox–de Boorの漸化式 (7)で表される．

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ)

+
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (7)

B-spline基底関数の一階微分値は式 (8)で与えられる．
d
dξ

Ni,p (ξ) =
p

ξi+p − ξi
Ni,p−1 (ξ)

− p
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (8)

要素は相異なるノットの区間として定義される．B-spline
基底関数を用いる有限要素法も，古典的な有限要素法
と同様にアイソパラメトリック構造が適用可能であり，
幾何形状も未知数同様に B-spline基底関数の線形結合
で表現される．幾何形状を離散化した結果得られる計算
点はコントロールポイントと呼ばれるが，多くの場合コ
ントロールポイントは幾何形状の表面には存在しない．
そこで本研究では，コントロールポイント座標を求める
ために，Otoguro et al. [20]のメッシュ生成手法を採用
した．なお，いずれの基底関数においても，多次元パラ
メトリック基底関数は，1次元パラメトリック基底関数
のテンソル積として定義される．また，本研究ではオー
プンノットベクトルを採用しており，B-spline基底関数
は区間の両端で補間特性を満たす．一方で，B-spline基
底関数は内部のノットでは補間特性を満たさないため，
本研究では Dirichlet境界に属するコントロールポイン
ト値を定数として，Dirichlet境界条件を課す．一般に，
p次 B-spline基底関数は，内部ノット ξi で定義される
要素境界で p−mi次の連続性を持つ．miはノット ξiに
おけるノットの多重度である．本研究では，すべての
内部要素境界において Cp−1 連続となるよう，全ての内
部ノットにおいて多重度を 1 とする．従来型重合メッ
シュ法の数値積分における課題は，グローバル基底関数
の要素境界における連続性の低さが原因であった．し
たがって，3次以上の B-spline基底関数をグローバル基

底関数に適用することで，基底関数とその一階微分値
が要素境界で連続かつ滑らかとなり，数値積分精度の
向上が実現された [19]．また，従来型重合メッシュ法
のもう一つの課題であった，各メッシュの基底関数の
線形独立性の喪失は，グローバルメッシュとローカル
メッシュの両方に Lagrange基底関数を適用するために
生じる問題である．そこで B-spline重合メッシュ法で
は，グローバル基底関数に B-spline基底関数を，ロー
カル基底関数に Lagrange 基底関数を適用することで，
基底関数同士の線形独立性を保ち上記問題を回避した
[19]．グローバルメッシュが構造格子であるという前提
を明記．なお，本研究は，構造格子を用いた界面捕捉
型の手法において局所高解像を実現するための基礎的
検討の位置づけであり，グローバルメッシュは構造格
子であることを前提とする．

3. B-spline重合メッシュ法の流体問題への適用
流体の空間領域を，時刻 t ∈ (0,T )において Γの境界
を持つ Ω ⊂ R3とする．非圧縮性粘性流体の支配方程式
は以下に示す Navier–stokes方程式と連続の式となる．

ρ

(
∂u
∂t
+ u · ∇u − f

)
− ∇ · σ = 0 on Ω ∀t ∈ (0,T ) (9a)

∇ · u = 0 on Ω ∀t ∈ (0,T ) (9b)

ここで，ρ，u， f はそれぞれ密度，流速，外力であり，
σは次式に示す応力テンソルである．

σ (u, p) = −pI + 2µε (u) (10)

ε (u) =
1
2

(
∇u + ∇uT

)
(11)

ここで pは圧力，µは粘性係数，Iは単位テンソル，εは
ひずみ速度テンソルである．Dirichletおよび Neumann
境界条件は次で表される．

u = g on Γg (12)

σn = h on Γh (13)

ここで，流速と圧力の無限次元の試行関数空間を Suと
Sp とし次のように定義する．

Su = {u | u (·, t) ∈
(
H1 (Ω)

)3
,u = g on Γg} (14)

Sp = {p | p (·) ∈ L2 (Ω) ,
∫
Ω

p dΩ = 0 if Γ = Γg} (15)

Su と Sp に合わせて，Navier-stokes方程式と連続の式
を表す重み関数空間を Vu と Vp とし以下のように定
義する．

Vu = {w | w (·) ∈
(
H1 (Ω)

)3
,w = 0 on Γg} (16)

Vp = Sp. (17)

これらの方程式に対して重み付き残差法を適用し，流
体における移流項による不安定性と非圧縮条件の過
拘束による不安定性を回避するために，Streamline-
Upwind/Petrov-Galerkin (SUPG)安定化 [21]と Pressure-
Stabilizing/Petrov-Galerkin (PSPG)安定化 [22]手法を導
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入すると，次式 (18)が導かれる．∫
Ω

w · ρ
(
∂u
∂t
+ u · ∇u − f

)
dΩ +

∫
Ω

ε (w) : σ (u, p) dΩ

−
∫
Γh

w · h dΓ +
∫
Ω

q∇ · u dΩ

+
∑

e

∫
Ωe

τSUPG (u · ∇w) · rM (u, p) dΩ

+
∑

e

∫
Ωe

τPSPG

(
∇q
ρ

)
· rM (u, p) dΩ = 0 (18)

ここで rM は Navier-stokes方程式の残差であり式 (19)
のように表される．

rM (u, p) = ρ
(
∂u
∂t
+ u · ∇u − f

)
− ∇ · σ (u, p) (19)

なお本論文では， τSUPS = τSUPG = τPSPG とし，以下の
安定化パラメータを用いる．ここで he は要素サイズで
あり，Reを Reynolds数とする．

τSUPS =

( 2
∆t

)2

+

(
2∥u∥
he

)2

+

(
4

Re (he)2

)2−
1
2

(20)

式 (18)と (19)を変形し次式を得る．

aΩ (w,u) + bΩ (w,u, p) + cΩ (q,u) + dΩ (w, q,u, p)

= LΩ (w) + MΩ (w, q) (21)

aΩ (w,u) =
∫
Ω

w · ρ
(
∂u
∂t
+ u · ∇u

)
dΩ (22)

bΩ (w,u, p) =
∫
Ω

ε (w) : σ (u, p) dΩ (23)

cΩ (q,u) =
∫
Ω

q∇ · u dΩ (24)

dΩ (w, q,u, p) =
∑

e

∫
Ωe

τSUPS

(
u · ∇w +

∇q
ρ

)
(25)

{
ρ

(
∂u
∂t
+ u · ∇u

)
− ∇ · σ (u, p)

}
dΩ

LΩ (w) =
∫
Ω

w · ρ f dΩ −
∫
Γh

w · h dΓ (26)

MΩ (w, q) =
∑

e

∫
Ωe

τSUPS

(
u · ∇w +

∇q
ρ

)
(−ρ f ) dΩ (27)

重合メッシュ法において，各物理量は以下のように
表せる．

u =

uG in ΩG \ΩL,

uG + uL in ΩL.
(28)

p =

pG in ΩG \ΩL,

pG + pL in ΩL.
(29)

局所領域境界 ΓL において，局所領域境界における解の
連続性を保証する以下の境界条件を課す．

uL = 0 , pL = 0 on ΓL, (30)

重み関数も物理量と同様に，グローバルメッシュ上の
値とローカルメッシュ上の値の和として定義される．

w =

wG in ΩG \ΩL,

wG + wL in ΩL.
(31)

q =

qG in ΩG \ΩL,

qG + qL in ΩL.
(32)

これらを式 (22)から式 (27)に代入し整理すると以下の
式が得られる．

aΩ (w,u) = aΩG

(
wG,uG

)
+ aΩL

(
wG,uL

)
+ aΩL

(
wL,uG

)
+ aΩL

(
wL,uL

)
(33)

bΩ (w,u, p) = bΩG

(
wG,uG, pG

)
+ bΩL

(
wG,uL, pL

)
+ bΩL

(
wL,uG, pG

)
+ bΩL

(
wL,uL, pL

)
(34)

cΩ (q,u) = cΩG

(
qG,uG

)
+ cΩL

(
qG,uL

)
+ cΩL

(
qL,uG

)
+ cΩL

(
qL,uL

)
(35)

dΩ (w, q,u, p) = dΩG

(
wG, qG,uG, pG

)
+ dΩL

(
wG, qG,uL, pL

)
+ dΩL

(
wL, qL,uG, pG

)
+ dΩL

(
wL, qL,uL, pL

)
(36)

LΩ (w) = LΩG

(
wG

)
+ LΩL

(
wL

)
(37)

MΩ (w, q) = MΩG

(
wG, qG

)
+ MΩL

(
wL, qL

)
(38)

式 (1)のように，試行関数 u, pおよび重み関数 w, qを
グローバルメッシュ基底関数 NG

A , A ∈ ηG − ηG
D とロー

カルメッシュ基底関数 NL
A , A ∈ ηL により有限要素離散

化する．なお ηG, ηL, ηG
D はそれぞれグローバル基底関

数のインデックス集合，ローカル基底関数のインデッ
クス集合，グローバル基底関数の内 Dirichlet境界条件
に関連する基底関数のインデックス集合であり，gh は
Dirichlet境界条件式 (12)を有限要素離散化したもので
ある．

uG ≃
∑

A∈ηG−ηG
D

NG
A uG

A + gh, uL ≃
∑
A∈ηL

NL
AuL

A (39)

pG ≃
∑

A∈ηG−ηG
D

NG
A pG

A , pL ≃
∑
A∈ηL

NL
A pL

A (40)

wG ≃
∑

A∈ηG−ηG
D

NG
A wG

A , wL ≃
∑
A∈ηL

NL
AwL

A (41)

qG ≃
∑

A∈ηG−ηG
D

NG
A qG

A , qL ≃
∑
A∈ηL

NL
AqL

A (42)

これらを式 (21) および式 (33) から式 (38) に代入し整
理すると，以下のように式 (3)に示される連立一次方程
式が得られる．なお，ここでは 1節点あたりの自由度
が 4（速度 3 成分，圧力 1 成分）のブロック行列を考
え，速度成分に対応する単位ベクトル ei, i ∈ {0, 1, 2}を
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導入する．
KGG = [KGG

A,B], (43)

KGG
A,B = aΩG

(
NG

A ei,NG
B e j

)
+ bΩG

(
NG

A ei,NG
B e j,NG

B

)
+ cΩG

(
NG

A ,N
G
B e j

)
+ dΩG

(
NG

A ei,NG
A ,N

G
B e j,NG

B

)
(44)

KGL = [KGL
AB ], (45)

KGL
AB = aΩL

(
NG

A ei,NL
Be j

)
+ bΩL

(
NG

A ei,NL
Be j,NL

B

)
+ cΩL

(
NG

A ,N
L
Be j

)
+ dΩL

(
NG

A ei,NG
A ,N

L
Be j,NL

B

)
(46)

KLG = [KLG
AB ], (47)

KLG
AB = aΩL

(
NL

Aei,NG
B e j

)
+ bΩL

(
NL

Aei,NG
B e j,NG

B

)
+ cΩL

(
NL

A ,N
G
B e j

)
+ dΩL

(
NL

Aei,NL
A ,N

G
B e j,NG

B

)
(48)

KLL = [KLL
AB], (49)

KLL
AB = aΩL

(
NL

Aei,NL
Be j

)
+ bΩL

(
NL

Aei,NL
Be j,NL

B

)
+ cΩL

(
NL

A ,N
L
Be j

)
+ dΩL

(
NL

Aei,NL
A ,N

L
Be j,NL

B

)
(50)

f G = { f G
A }, (51)

f G
A = LΩG

(
NG

A ei

)
+ MΩG

(
NG

A ei,NG
A

)
− aΩG

(
NG

A ei, gh
)
− bΩG

(
NG

A ei, gh,NG
B

)
− cΩG

(
NG

A , g
h
)
− dΩG

(
NG

A ei,NG
A , g

h,NG
B

)
(52)

f L = { f L
A }, (53)

f L
A = LΩL

(
NL

Aei

)
+ MΩL

(
NL

Aei,NL
A

)
− aΩL

(
NL

Aei, gh
)
− bΩL

(
NL

Aei, gh,NG
B

)
− cΩL

(
NL

A , g
h
)
− dΩL

(
NL

Aei,NL
A , g

h,NG
B

)
(54)

ϕG = {ϕG
A }, (55)

ϕL = {ϕL
A}, (56)

式変形の一例は [19]に譲る．なお本研究では，時間方
向の離散化に Crank-Nicolson法，移流速度の線形化に
2次 Adams-Bashforth法を採用した．

4. 妥当性検証および数値計算例
提案手法を用いた各種計算例は，口頭発表にて紹介
する．

5. 結語
本研究では，流体の境界値問題における界面捕捉型
アプローチに対し，局所高精度化を実現する方法論を
提示するものである．本発表はその最初のステップとし
て，本アプローチの基盤となる B-spline重合メッシュ法
の流体解析への拡張を行い，重合メッシュ法のフレーム
ワークにより局所的に高精度化可能であることを示した．
今後の取り組みとしては，界面での境界条件を扱うた
めの Nitsche法の導入や，移動境界層を追跡するための
ローカルメッシュに対する arbitrary Lagrangian–Eulerian
(ALE)スキームの導入を行う．
謝辞: 本研究は，JST 創発的研究支援事業 JP-
MJFR215S，JST ACT-X JPMJAX24LG，JSPS 科研費
23H00475, JSPS 科研費 24KJ0499，学際大規模情報基
盤共同利用・共同研究拠点 (JHPCN) jh240017 の支援
を受けたものである．ここに記して謝意を表する．
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