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This study proposes a framework for assessing the seismic risk of buildings in large-scale urban

areas. City-scale numerical simulations and sensor networks are integrated to update building-

specific fragility functions. The proper orthogonal decomposition (POD) technique plays a crucial

role in analyzing numerical simulation data. The POD-based approach helps to represent large-

scale simulation results in a more compact and meaningful way, a crucial step in understanding

seismic impacts. The framework also highlights the importance of sparse sensor distribution. Fur-

thermore, this study uses cloud analysis and Bayesian updating to update the fragility functions

of buildings based on sensor data. Fragility functions for all buildings are created based on cloud

analysis using numerical simulation data, and then progressively refines them by incorporating

sensor data through Bayesian inference. This dual-stage approach allows for a rapid risk assess-

ment of all buildings in a target area, with continuous improvements to fragility functions by the

sensor data.
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1. INTRODUCTION

This study proposes a framework for assessing the seis-

mic risk of buildings in large-scale urban areas, which in-

tegrates city-scale numerical simulations and a sparse sen-

sor network. The key aspect of this approach is the use

of numerical simulation to create fragility functions for

each building, and to identify efficient sensor distribution.

Furthermore, the data obtained from the sensors are used

to update the fragility functions, progressively enhancing

their accuracy and providing a more precise assessment of

seismic impacts on urban structures.

A critical part of this study is applying POD to analyze

numerical simulation data. Proper Orthogonal Decomposi-

tion (POD) can identify principal components from numer-

ical simulation data, enabling effective data decomposition

and reconstruction. This approach helps represent large-

scale simulation results more compactly and meaningfully,

which is crucial for understanding seismic impacts. Addi-

tionally, the framework also highlights the importance of

sparse sensor distribution. The study strategically places

sensors to maximize data collection efficiency while min-

imizing the number of sensors. This optimization is vital

for practical use in urban areas, where large sensor net-

works may be impractical.

The fragility functions for all buildings are created using

simulation data based on the concept of the cloud analysis.

Cloud analysis uses the linear regression in the logarithmic

scale by least squares to establish the relationship between

engineering demand parameter (EDP) and intensity mea-

sure(IM). Obtained fragility functions are then updated us-

ing the sensor data based on Bayesian inference. This up-

dating makes the functions more accurate.

In this study, a trial calculation is finally conducted to

verify the effectiveness of the proposed framework, focus-

ing on Sendai City as the target area.

2. Numerical simulation

The following two methods were employed to calcu-

late the propagation of seismic waves from the fault to

the ground surface and the response of buildings on the

ground.
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(1) Stochastic Green’s Function

The Stochastic Green’s function method expands on the

empirical Green’s function method, which was initially in-

troduced by Irikura[2]. The empirical Green’s function

method relies on observed records as Green’s functions,

presuming that the deep and shallow subsurface structures

at the observation point are already integrated into the ob-

served records. On the other hand, this method serves as an

effective alternative when appropriate observation records

cannot be obtained.

In the application of the Stochastic Green’s function

method by Dan and Sato[3], the fault surface is segmented

into small sub-faults, and Boore’s stochastic source model

is taken into account for each sub-fault to compute the

Green’s functions. The deep subsurface structure is treated

as a one-dimensional layered structure for ground response

analysis. Random phase characteristics are attributed to

this Green’s function, and waveform synthesis is con-

ducted by Irikura[2] to derive the seismic waveforms when

the entire fault experiences rupture. This study utilizes the

program provided by the National Research Institute for

Earth Science and Disaster Resilience[4].

(2) Integrated Earthquake Simulator(IES)

IES is a program that is linked to a Geographic Infor-

mation System (GIS) and incorporates earthquake motion

simulation, structural response simulation, and response

behavior simulation[5]. Wave propagation simulation: It

outputs synthesized earthquake waves based on the fault

mechanism. The propagation of waves passing through

the crust is calculated, and the amplification of waves near

the surface is calculated taking into account the non-linear

characteristics of the 3-dimensional topographical effect

and the shallow soil layer.

Structural response simulation: It calculates the response

for all structures in the targeted area, including residen-

tial buildings, concrete infrastructure structures, geological

structures, transportation networks, etc. It is necessary to

choose an appropriate analysis method depending on the

structure of the building.

Response behavior simulation: It is possible to analyze

evacuation from building damage, crisis management, and

restoration plans.

Finally, by modifying the fault model, multiple scenar-

ios were generated, and using both the Stochastic Green’s

Function and IES, training and validation datasets were

computed.

3. Sparse sensor distribution

The first part of this framework is a prediction model,

based on proper orthogonal decompsition and sparse sens-

ing, it can predict both seismic motion and structure re-

sponse in a large area.

Proper Orthogonal Decomposition(POD) is mathematical

operation that can extract modes from original data, al-

lowing for mode decomposition based on the theory of

singular value decomposition[6]. Let xi represent the n-

dimensional simulation result for a specific case i, and de-

fine the data X by arranging N cases in a row direction.

X =





| |
x1 · · · xN

| |



 . (1)

Let σj and vj be the singular values and right singular vec-

tors obtained, respectively, and let V be a matrix in which

the eigenvectors are arranged in column direction. Using

these, consider the singular value decomposition of X as

follows:

X = UΣV T (2)

By retaining only r columns from the r singular values and

their corresponding modes U (left singular vector), we ob-

tain an n×r matrix. Similarly, by retaining only r columns

from the singular vector matrix V , we obtain an N×r ma-

trix. x as follows:

X = UrΣrV
T
r =

r
∑

k=1

uk(σkv
T
k ), (3)

in which

xi =
N
∑

j=1

(σjv
T
ij)uj =

N
∑

j=1

zijuj . (4)

Here σk represents the k-th singular value, and vik repre-

sents the i-th component of V in the k-th column. Thus,

the data xi for a specific case i is given by the sum of the

products of the singular values, the i-th component of U ,

and the i-th component of V , for k ranging from 1 to r.

Then we consider the following linear system:

y = HUz = Cz. (5)

The equation describes a system where y ∈ Rp is the ob-

servation vector, H ∈ Rp×n represents the sparse sensor

location matrix, U ∈ Rn×r denotes the sensor candidate

matrix, z ∈ Rr is the latent state vector, and C ∈ Rp×r

is the measurement matrix, with C = HU being their

relation. In the matrix H , each row has a unity element in-

dicating the sensor location, with all other elements being

zero. When observations are subjected to uniform indepen-

dent Gaussian noise, represented as N(0, σ2I), the esti-

mated parameters ẑ are derived applying a pseudo-inverse

method as

ẑ =

{

CT (CCT )−1y, p ≤ r,

(CTC)−1CTy, p > r.

subject to C ∈ Rp×r, p, r ∈ N.

(6)

A D-optimal design aims to minimize the determinant of

the error covariance matrix. This can also be seen to mini-

mize the determinant of the error covariance matrix.

max fD, fD =

{

det
(

CCT
)

(p ≤ r)

det
(

CTC
)

(p > r)
(7)

To maximaze the objective function, genetic algorithm is

adopted in this study.
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4. Fragility Function

Another key part of this framework is seismic assess-

ment based on predicted data by sensor network, which

contains construct initial fragility function and sequential

update of such a function by bayesian inference.

(1) Cloud analysis

Fragility functions are derived from a structural assess-

ment of the system (in the case of analytical form). In sim-

pler terms, fragility can be defined as the susceptibility of

a structure to collapse or being damaged. It is a continu-

ous function showing the probability of exceeding a certain

limit state (LS) for a specific level of ground motion inten-

sity measure (IM)[8] as blow

Fragility = P [LS|IM = im] (8)

Cloud analysis uses the linear regression in the logarithmic

scale by least squares to establish the relationship between

engineering demand parameter (EDP) and IM as follows:

E[lnEDP | IM ] = lnµd = ln a+ b ln IM

σd =

√

√

√

√

N
∑

j=1

(lnEDPj − lnµd)
2
/(N − 2)

(9)

where IM, EDPj = EDP obtained from the j-th ground

motion, a and b are regression coefficients; and N is

number of ground motions. The fragility function is ex-

pressed as the damage probability that EDP exceeds the

pre-defined value threshold for each limit state (LS) condi-

tional on IM. This probability can be derived based on the

above linear relationship between EDP and IM under the

lognormal probability distribution[9] as

Pf [EDP ≥ LS | IM, η, β]

= Φ

{

ln (µd)− ln(LS)

σd

}

= Φ

{

ln(IM)− ln(η)

β

}

,

(10)

where Φ(·) is standard normal cumulative distribution

function (CDF); η is median of the fragility function, i.e,

ln(η) = [ln(LS) − ln(a)]/b; and β is dispersion of the

fragility function, i.e., β = σd/b. Note that Eq.(10) is a

two parameter (η and β) fragility function given IM. When

the fragility function is expressed with respect to ground

motion intensity (denoted by x), such as peak ground ac-

celeration (PGA), the mathematical form can be expressed

as follows:

Pf = FX(x;µ, σ) =
1

2
+

1

2
erf

[

ln(x)− ln(µ)

σ
√
2

]

, (11)

where erf is error function, σ = is dispersion, i.e., and µ is

natural logarithm of the median ground motion intensity.

Limit state refers to a specific level of damage or failure

that is used to define fragility functions. In this case, the

limit states of “moderate” was chosen from HAZUS[12] to

develop the fragility functions.

(2) Bayesian updating

To update the fragility functions shown in Eq. (11) using

the Bayesian framework under a seismic event, the random

variables θ need to be updated contains µ and σ; i.e., the

natural logarithm of the meanground motion intensity and

the dispersion[10], respectively. More specifically,

θ1 = µ

θ2 = σ.
(12)

We define a prior distribution for each parameter because

the two are independent of each other, and the joint prior

distribution is the product of the two prior distributions as

f ′(θ) = P (θ1 | µ1, σ1) · P (θ2 | a2, b2) . (13)

On the other hand, the likelyhood function of fragility is

shown as blow[11],

L(ε | θ) =
n
∏

i=1

[1− FX (xi; θ)]
1−εi FX (xi; θ)

εi (14)

where εi is expressed as a binary number. For each limit

state, when the building collapse, then εi = 1, other-

wise, εi = 0. xi is observed intensity measure(PGA)

for each building after an earthquake occured. Here,

FX (xi; θ) is the fragility function given in Eq.(11). Ac-

cording to Bayesian theorem, the updated distribution of

the parameters, called the posterior distribution (denoted

by f ′′(θ)), which combines the existing knowledge (de-

noted by f ′(θ)) and the newly obtain information (denoted

by L(ε | θ)), is given as follows:

f ′′(θ) ∝ L(ε | θ)f ′(θ) (15)

The posterior distribution is computed numerically by

Markov chain Monte Carlo (MCMC) sampling, and then

the marginal distributions of the two parameters θ1, θ2
are computed separately. Then the expectation for each

marginal distribution is the desired updated parameter for

fragility function and .

5. Seismic risk assessment in Sendai city

Based on Nagamachi-Rifu fault parameters and the

recipe reported by Irikura (2011)[13], four more specific

fault models were constructed by varying the original pa-

rameters of the Nagamachi-Rifu fault. The magnitudes for

the training data set are 6.3, 7.0, and 7.5, while for the

validation data set is 6.5, measured on the Japan Meteoro-

logical Agency magnitude scale, while the uncertainty of

seismic wave, three different patterns of seismic wave are

also considered for each magnitude.

Utilizing the Stochastic Green’s Function method en-

abled the generation of seismic waves and the IES was

used to acquire ground-level waveforms and building re-

sponse. This approach yielded a data set that included peak

ground acceleration and maximum inter-story drift angle.

Following the principles of POD, spacial modes of peak

ground acceleration and maximum inter-story drift angle
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Fig. 1 Target area (32334 buildings)

were obtained and allowed for the calculation of optimal

sensor distribution. From Fig.2, it can be concluded that at

least 9 sensors are needed for the estimation of the seismic

motion and building responses. The obtained sensor distri-

bution are shown in Fig3.

At the same time, the numerical simulation results are

also used to construct the initial fragility function for each

building type in Sendai city. As described in Eq.(10),

both peak ground acceleration and maximum inter-story

drift angle were used as intensity measures (IM) and en-

gineering demand parameters (EDP), respectively. After

categorizing the buildings according to their height cate-

gories, the initial fragility functions were calculated. Sub-

sequently, the validation set was used as observational

data. For each category, only a portion of this data was

used as observation, them by the prediction model of this

framework. For the validation case, at magnitude 6.3, by

comparing the results obtained from the prediction with the

theoretical numerical simulation, it can be seen that there is

still an error of almost 20%. Then the predicted PGA map

is used as observation, using the initial fragility function,

according to Equation 10, a preliminary risk assessment

can be obtained, as shown in Fig. 6, and then, according to

the previously defined damage threshold, combined with

the predicted observation PGA, an update can be made for

the current fragility function, and then the risk assessment

is performed again to obtain as shown in Fig. 7.

6. Conclusion

This study proposed novel risk assessment of buildings

in urban area, and a trial calculation was conducted con-

sidering a part of Sendai city to examine the performance

of the proposed framework. The obtained results suggest

the utility of the proposed framework, and further research

development is anticipated in the future.

However, using limit states provided by HAZUS

(thresholds of maximum inter-story drift angle), the study

categorized buildings based on floor and structural at-

tributes and developed distinct fragility functions for each

category. The reliability of these limit states is a mat-

ter of ongoing debate, especially for buildings in Japan,

Fig. 2 Error of prediction

Fig. 3 Sensor distribution

Fig. 4 Prediction

where adopting local standards might be more accurate.

Moreover, due to insufficient data points for individual

buildings, similar building types were combined to com-

pute fragility functions. Future research should increase

the data volume by altering fault parameters for more sce-

narios and considering greater uncertainties. This will not
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Fig. 5 Simulation

Fig. 6 Risk assessment (before update)

Fig. 7 Risk assessment (after update)

only address the data scarcity for individual buildings but

also improve the sparse sensing models’ accuracy, allow-

ing for more precise predictions. Enhancing data volume

is key to continuously updating fragility functions for each

building using Bayesian inference, making them more rep-

resentative of each building’s unique characteristics.

I should be also noted that this study primarily utilizes

PGA as the intensity measure for surface seismic motions.

This measure, however, may not accurately reflect the im-

pact of an earthquake, as it does not precisely represent the

complexities of seismic waves. Future studies should em-

ploy more comprehensive and precise intensity measures

that better capture the nuances of earthquake impacts on

urban structures.
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