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This report is part of a research project to apply Helmholtz decomposition (H-d ) to the finite element 

method. The equation of H-d is applicable to vector field in general and accompanies Coulomb gauge 
(𝑑𝑖𝑣𝝍 = 0), i.e. general solution for 𝝍 and particulars:(𝑑𝑖𝑣𝝍 ≠ 0). Accordingly, H-d decompose strain 

vector field 𝝉 using potential 𝚿, also potential vector field 𝝍 using potentials 𝝀, and the same way, 

decompose higher, also lower derivative fields using vector potentials  (⋯ , 𝝀,𝝍,𝚿,⋯ )  and scalar 

potentials  (⋯ , 𝜐, 𝜑,Φ,⋯ ). This report discusses regarding relationship between isogeometric analysys 

(IGA) and isoparametric analysis (IPA), also relationship between derivatives of distributed outer forces 

and inner forces represented by H-d. 
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1． はじめに：NURBS は有限要素表示できる？ 

(1) 有限要素法はTaylor級数法 

アイソジオメトリック解析（IGA）のNURBS 曲面を，三角形・

四辺形の板曲げ（Platte），或いは平面版（Scheibe）の有限要

素の系で再現する．（別報 [1] 参照のこと．） 

NURBS は多項式（Taylor 級数）の補間法である．つまり

線形関数を取り扱う． 

状態方程式を表す正の物理量：温度T×圧力P×密度𝜌 

は，指数関数表示すると都合よいが，非線形なので結局，

多項式の有限要素表示法に落ち着く． 

そこで，著者は有限要素法を“Taylor 級数法”と解釈し

ている．したがってNURBSは“有限要素表示可能”とす

るものである． 

ラグランジュ（Lagrange）補間やエルミート（Hermite）補

間は従来から在るが，適用の機会は殆ど無く，Taylor 級数

の係数ベクトルをノードパラメータで，直接表示する方

法を常用している．（高次要素のノードパラメータ表示法の

“コツ” は [ 付録] 参照．） 

(2) Helmholtz分解は任意のベクトル場を分解する 

本報は，Helmholtz 分解（H-d ）に基づく連続体理論の有

限要素法への適用に関する研究，から派生した“形状入力”

に関する考察・提案である． 

H-d は任意のベクトル場をポテンシャル𝜑と𝝍で，Lateral

（縦）成分とTransverse（横）成分に分解する． 

任意のベクトル場とは，変位ベクトル場・ひずみベクト

ル場・ポテンシャルベクトル場，などが考えられるが，形

状ベクトル場 𝐗 を考える． 

ベクトル場 𝐗 を，ポテンシャルルΦと𝚿 で分解表示す

るものである． 

粒子で考えれば，Φ は粒跡（particle path）を表し，𝚿 は3

軸周りそれぞれの粒子自転の，粒子群相互間の影響によ

る，流跡への影響分である．つまり Φ の横ズレ分である． 

⋯ ,∇𝑑𝑖𝑎𝑔
2 𝜐 = ∇𝜑, ∇𝑑𝑖𝑎𝑔

2 𝜑 = ∇Φ,∇𝑑𝑖𝑎𝑔
2 Φ = ∇Θ,⋯ で任意の

ベクトル場を表して行けば，流跡 Φ は∇𝜑, ∇𝑑𝑖𝑎𝑔
2 𝜐,⋯ で表

せる．（∇𝑑𝑖𝑎𝑔
2 𝜐 は ∇∇𝜐 の 対角成分．） 

まり 𝐗 は，C1級Φ ，C2級𝜑，C3級 𝜐,⋯ で表して行ける． 

それがNURBS曲線であり，H-d に基づくけば，曲面・ソ

リッドも表せる． 

つまり，IGAはアイソパラメトリック解析(IPA)可能である． 

ただ，解析目的はC1級要素で十分達せられる，と考え

ている． 

CADの形状表示の要求（審美的要求）は，C2 級・C3 級の

スプラインである．（サブパラメトリック要素法の概念と，変

位・形状の次数が逆の要求となる：super parametric．） 

IPAは，CAD へ適用してもスプライン曲面に留まらず，

地層や，皮膚・皮下層・筋肉層・骨層 などの3D 層の表現・

解析も可能となる． 

(3) IGAの目的 

ポテンシャル表示の適合要素はC1 級が要求される．必

然的にC1 級要素の適用法検討が，H-d に基づく連続体理

論の有限要素法への適用に関する研究，の主体となった． 

Bスプライン曲線は，Cn 連続が謳い文句である． 

IGAはそれら関数による新しい解析法の開発が目的と

なるが，いまひとつの目的は，CADデータを転用して，形

状データ作成ステップを省略する，２つの目的を持つと

解釈している． 

H-d は Cn 連続な解析・Cn 連続な形状表示，いずれも可

能であるが，本報では後者を検討する． 

前者はC1要素で解析目的は充分達せられる，とするも

のである． 

離散計算向きに H-d のベクトルポテンシャル項 𝑐𝑢𝑟𝑙𝝍 を
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修正した“離散Helmholtz 分解（dHd ）法”を提唱している

が，形状表示が検討目的の本報では，スカラーポテンシャル

項 ∇𝜑 が主体となり，H-d, dHd 共に共通である． 

(4) 桁で解り易く 

NURBS曲線とポテンシャル表示の関係は，1Dの桁で曲

線（アーチなど）の形状を表す方法で理解できる．（概念が

関係付けできる．） 

簡単のため，変位自由度は鉛直方向の 𝑤 のみ考える． 

桁の始端・終端位置を決め，複数の中間点（ノード） 𝑘 に

 {𝑤}𝑘  を与えて折れ線を描く．（制御点と折れ線に相当．） 

ポテンシャル 𝜑 を＜𝑑𝜑 𝑑𝑥⁄ − 𝑤 = 0＞と定義し，𝜑 曲

線を描く． 

ただ，局所原点 {𝜑}0 の位置は自由なので，始端位置に

置き，かつ勾配 ＜{𝑑𝜑 𝑑𝑥}0 =⁄  {𝑤}0＞
 を与えて，𝜑 スプ

ラインを順次描いて行く．（ {𝑑𝜑 𝑑𝑥}𝑘 =⁄  {𝑤}𝑘  ）
  

終端 {𝜑}𝑚 の位置は，桁の他端位置に一致させ，かつ，

全体を回転すれば，𝜑 曲線はC1級である． 

各点の {𝜑}𝑘  は，{𝑥}𝑘  に比例して修正する．或いは，等

分割点の修正量を，それぞれ配分して行けば，計算負荷は

減る．（始端の修正係数 =0, 終端は =1, 等分割点なら，

係数は予め分かっている．） 

更に，＜𝑑2𝜐 𝑑𝑥⁄ − 𝑑𝜑 𝑑𝑥⁄ = 0＞と定義し，𝜐 曲線を同様

に描き，同様に修正して行けば，C2級曲線を得る． 

上述を連続桁で考えれば，始端・終端直線からの相対変

位を中間支持点に与え，せん断力は不連続，モーメント曲

線をC0級で，傾角をC1級で，𝑤 をC2級で，𝜑 をC3級で描

いて行くことになり，それらは更に，剛性分布でコントロ

ールできる． 

要するに，区間 𝑚 の両端のベクトル：{𝑤, 𝜑, 𝜐,⋯ }𝑚−0 と

{𝑤, 𝜑, 𝜐,⋯ }𝑚+1
 を与えれば，当該区間のCn 曲線は描ける． 

それら両端ベクトルは parametric に，かつ interactive に

決定した NURBS-CAD システムの値で，与え得る． 

2． 遷移行列とH-d 有限要素法 

(1) 遷移行列有限要素法 

力学の系は一般に，ひずみは不連続で，“変位・応力”

が連続である． 

したがって混相・混 [剛性]の系では有限要素は，状態量

ベクトル{𝒖, ∇𝐅} （{𝒖, ∇𝒖} に代えて，変位を 𝒖 ，剛性を G ，

∇𝐅 ≡ G∇𝒖 として表すベクトル）を遷移行列で表示して行く

べきである．（単相も！） 

形状関数は＜ G = 1 ＞の [遷移行列]‧{ 状態量ベクトル}

で表す．（つまり Taylor 級数表示．） 

なお，状態量ベクトル（state vector，独：Zustandvektor）で

表す遷移行列法の特徴（特長）は，＜ G = ∞＞の剛体が，隘

路なしに計算可能なことであり，マルチボディダイナミクス

は，遷移行列でそのまま計算して行ける． 

 

(2) Helmholtz 分解表示 

多少重複説明になるが，Helmholtzの定理は任意のベク

トル場 𝐕 をスカラーポテンシャル 𝜑 とベクトルポテンシャル

 𝝍 で，Coulombゲージを制約条件として，式(1)のごとく，

Lateral（縦）成分とTransverse（横）成分に分解表示できると

する．[2] 
 

𝐕 = ∇𝜑 + 𝑐𝑢𝑟𝑙𝝍  (𝑑𝑖𝑣𝝍 = 0) (1) 
 

本報では ∇𝜑 項で形状表示し，形状表示には非圧縮⁄圧

縮は関係しないが，解析では非圧縮成分を∇𝜑 とし，圧縮

成分を∇𝜑𝐶  として，変位ベクトル場の縦成分 𝒖L は，式(2)

で表す． 
 

𝒖L = ∇𝜑 + ∇𝜑𝐶  (∇1𝜑 = 0, ∇1𝜑𝐶 ≠ 0) (2) 
 

ラプラシアン ∇2𝜑と同様，∇1𝜑 ≡ {1,1,1} ∙ ∇𝜑 と定義し，

以降では ∇3𝜑,  ∇4𝜑,⋯ ,  ∇𝑛𝜑 表示も適用して行く． 

＜∇1𝜑 = 0 ＞ は ＜∇1𝜑 ≠ 0＞の一般解であり，前述の

ように，圧縮⁄非圧縮に拘わらず計算して，式(1)や式(2)を

表して行く必要がある． 

任意のベクトル場を分解表示できるとは，変位ベクト

ル場 𝒖 ≡ 𝚿，ひずみレベルのベクトル場 𝐕，また，ポテン

シャルベクトル場 𝝍 も分解表示できると解釈し，∇𝜑, 𝑐𝑢𝑟𝑙𝝍 

前後の導関数ベクトルを，式形(3)の記号で表して行く． 

そのうち，スカラーポテンシャル項に関しては既に述

べた． 
 

     ∇(⋯ , 𝜐, 𝜑,Φ, Θ,⋯ )
𝑐𝑢𝑟𝑙(⋯ , 𝝀,𝝍,𝚿,𝚷,⋯ )

   } (3) 

 

Θ は湧き出し（sink）であり，圧力 P は法線応力平均と定

義されているので，𝜇 を粘性係数として，∇P = 𝜇∇Θ 3 ⁄ の

関係に在る． 

(3) Helmholtz 分解の原始変数表示と非圧縮計算 

したがってprimitive variable（原始変数）で，式(1)の変位

ベクトル場 𝒖(≡ 𝚿 )，ひずみレベルのベクトル場 𝐕(≡ 𝚷)，

並びに 𝐕 の 導関数レベルのベクトル場 𝐖 を表示すれば，

式(4)となる． 
 

𝒖 = ∇𝜑 + 𝑐𝑢𝑟𝑙𝝍  (𝑑𝑖𝑣𝝍 = 0)
𝐕 = ∇Φ+ 𝑐𝑢𝑟𝑙𝒖  (𝑑𝑖𝑣𝒖 = 0)

𝐖 =
3

𝜇
∇P + 𝑐𝑢𝑟𝑙𝐕  (𝑑𝑖𝑣𝐕 = 0)

  

}
 

 
 (4) 

 

解析では，前述のように，非圧縮計算が必ず要求される． 

＜ΦC − 𝑑𝑖𝑣𝒖𝑚−1 ⟹ 0,∇(ΦC − 𝑑𝑖𝑣𝒖𝑚−1) ⟹ 𝟎＞を  反

復計算：𝒖𝑚 = 𝒖𝑚−1 + 𝛥𝒖, (m = 0,1,2,⋯）の第１ステップと

し，第２ステップで増分（修正量）𝛥𝒖を＜𝛥𝒖 +ΦC ⟹ 𝟎,  

∇( 𝛥𝒖 + ΦC) ⟹ 𝟎＞で計算（或いは 𝒖 の ひずみエネルギ

ー変分計算の制約条件式として計算）して行けば，𝒖 に含

まれる偽圧縮成分をoffset（相殺）して行ける． 

上述スキームでは，流れ場の加速度項も，拡散項の変分

項も，いずれもCoulombゲージを満たす． 
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(4) 修正MAC法 

C1級の 𝜑 および P 要素を適用する流れ場の仮想仕事法

スキームで，P 要素を時間ステップの中間 (𝑛 + 𝛥𝑡 2)⁄  で

計算して行く． 

MAC（Marker And Cell）法の縦成分加速度項の計算は，

式(5)で P 要素を計算し，式(6)を加速度項計算の制約式と

して， ∇𝜑𝑛+1 の増分 ∇𝛥𝜑𝑛+1 を計算して行く． 
 

∫𝛿
 

Ω

∇P ∙ (∇𝑝 −
∇𝜑𝑛+1 + ∇𝜑𝑛

2𝛥𝑡
)𝑑Ω = 0 (5) 

 
 

+∫𝛿
 

Ω

∇𝜑 ∙ (∇𝛥𝜑𝑛+1 + 𝛥𝑡∇𝑝)𝑑Ω = 0 (6) 

 

上述は (∇𝜑𝑛+1 + ∇𝜑𝑛) に 含まれる偽圧縮成分 ∇𝜑𝐶  の

offset（相殺）スキームである． 

C1級 P 要素では，式(5)の計算と同時に式(7)を計算し，

式(8)をNavier-Stokes（NS）方程式の拡散項計算の制約条件

式として，式(6)と共に計算して行く． 
 

∫𝛿
 

Ω

∇2P ∙ (𝑝 − 𝜈∇2𝜑)𝑑Ω = 0 (7) 

 
 

+∫𝛿
 

Ω

∇2𝜑 ∙ (𝜈∇2𝛥𝜑𝑛+1 + 𝑝)𝑑Ω = 0 (8) 

 

よって，速度・速度勾配，いずれも弱形式ではあるが，

Coulombゲージを満たす． 

(5) Cn 連続要素 

目的とする形状は，スカラーポテンシャルで表示（描画）

する．（スプライン曲線は 𝜑 で表す．曲線群で曲面を表示．） 

既に述べたが，∇𝜑 が連続なら，𝜑 要素はC1級である． 

∇∇𝜐 が連続なら，𝜐 要素はC2級であり，形状（スプライン

曲線群）はスカラーポテンシャル 𝜐 で描画する． 

同様にして，階数を遡ってポテンシャルを定義して行

けば，C3級要素，・・・，Cn 級要素が，定義したポテン

シャルで表せ，それらポテンシャルで描画できる． 

(6) ゆがみパラメータ項の計算 

C1級要素では，∇𝑛𝜑 を要素間境界への法線方向勾配と

すれば，∇𝑛𝜑 が要素辺，或いは稜に沿って連続，が条件で

ある． 

したがって，頂点ノードパラメータに {∇𝑛,𝑠𝜑}𝑘  を含む

必要がある．つまり，三角形要素であっても，ゆがみパラ

メータ{𝜑(11)}𝑘  を含む． 

辺・稜に沿って ∇𝑛,𝑠𝜑 を安定させるために，各辺に沿っ

て ∫ ∇𝑛,𝑠
 

𝜕Ω
𝜑𝜕Ω ⟹ 0 を{𝜑(11)}𝑘  で変分する． 

要素内積分形では ∫ 𝜑(11)
 

Ω
𝑑Ω ⟹ 0 である． 

上述は要素ごとに計算して，{𝜑(11)}𝑘  を消去できる． 

或いは{𝜑(11)}𝑘  を，当該頂点ノードで，要素間で共有（等

値）し，連立方程式で満たして行く．（後者の板曲げ計算

例は厳密解と，高度に一致する．） 

C2級要素では＜∇∇𝜐 ⟹ 𝟎＞で，ノードパラメータ成分

{∇∇𝜐}𝑘  を，同様に消去して行けば，NURBSを有限要素で

再現できる．ただ，解析はC1級で十分応え得る，とした． 

したがってCADシステムの描画に，IPAシステムのC1

描画を重ね書きし，必要に応じて有限要素を2分割，3分割

すれば解析目的に十分適う． 

3． スカラーポテンシャルによるスプライン曲線・曲面 

(1) スプライン曲線 

はじめに述べた，曲げ剛性 G = 1 の連続桁で表示する． 

桁の，棒としての伸縮変位 𝑢 は＜𝑢 = 𝜑(1)＞で表し，C1

級棒要素（ 𝜑 要素）のノードパラメータは {𝜑(1)}𝑘  で表す． 

たわみもポテンシャル表示＜ 𝑤 = 𝜑 ＞し，通常の連続

桁としてノードパラメータ値を与え，たわみを表示すれ

ば，C1 連続スプライン曲線を得る． 

それを形状データとすれば，3D曲線の連続桁解法は確

立している．[3] ～[5] 

(2) スプライン曲面 

桁曲げ同様，板曲げで表示できる．面内変位はScheibe

の 𝜑 で 表す．（前掲 [1] ） 

NURBSによる板曲げ解法[6]に比べ，格段に容易である． 

(3) 1D要素，2D三角形要素・四辺形要素・五辺形要素 

1Dのn 階連続要素は(2n+1)次の要素で，両端に(n+1)数

のノードパラメータを有す． 

2Dの三角・四辺形要素は，辺上1Dの関数が，頂点のノ

ード上で回転するので，回転行列(n+1)×(n+1)数のノード

パラメータを有す． 

2D五辺形要素は、四辺形要素から部分的に三角形面積

を欠くので，四辺形要素の頂点ノードの一つを{𝜑(11)}0で

表し，そのノードを共有する三角形 𝜑(11) 要素を重ねる． 

三角形面積内の 𝜑(11) 分布を，共有する{𝜑(11)}0の自由

度で，数値的にゼロ分布として行けば，三角形要素の残り

2頂点ノードパラメータが，五辺形要素のノードパラメー

タとなる． 

4． ま と め 

NURBS は多項式の補間法であるから，同じくTaylor級

数法であるCn 級有限要素で表示可能な筈である． 

NURBS-CADシステムは， parametric に，かつ interactive 

にCn連続な形状を作図する． 

有限要素のノードパラメータを出力するよう機能追加

すれば，有限要素法の形状データとして，そのまま使える． 

形状データが精密であれば，要素細分割計算可能な有

限要素法では，C1級要素解法で対応できる，とした． 

謝辞: Helmholtz分解の有限要素法への適用の研究に関し, 

長年慶應義塾大学名誉教授 棚橋隆彦先生にアドバイス

を頂いた. 記して感謝の意を表します. 
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付録: 高次要素のノードパラメータ表示による計算法 

有限要素の関数の係数ベクトルをノードパラメータ表

示するには，三角形要素の例では，ノードパラメータベク

トル{𝜑𝑘} ≡ {𝜑1, 𝜑2, 𝜑3} を，先ず要素関数で表す． 

つまり係数ベクトルを{𝜑(𝑖𝑗)}0 ≡ {𝜑
(00), 𝜑(10), 𝜑(01)}0と

して，行列 [𝐀] を介し，{𝜑𝑘} = [𝐀] ∙ {𝜑
(𝑖𝑗)}0 で表す． 

次いで，[A]−1 を計算して，{𝜑(𝑖𝑗)}0 = [𝐀]
−1 ∙  {𝜑𝑘}で表

せばよい． 

ただし，要素重心を局所原点として [𝐀] ∙ {𝜑(𝑖𝑗)}0 を
 表

したのでは，高次要素では [A]−1 は計算できない． 

そこで，要素を第Ⅰ象限に置くよう，局所原点を設定し

て計算すれば，[A]−1 は確実に計算できる． 

上述は高次要素に限らず，低次のC0要素でも，菱型要素

の[A]−1 は計算できない．（第Ⅰ象限に置けば計算できる．） 

上述の知見は，高次要素法を可能とする第１歩である． 
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