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This paper deals with a parallel finite element analysis by Hierarchical Domain Decomposition Method 

(HDDM) of an electromagnetic field problem with product-type Krylov subspace methods. A stabilized 

type (BiCGSTAB, BiCRSTAB, COCGSTAB and COCRSTAB methods) are applied to the HDDM and 

verified in the magnetostatic, time-harmonic eddy current and high-frequency electromagnetic problems. 

As a result, in the magnetostatic and time-harmonic eddy current problems, the numbers of iterations have 

been reduced. Furthermore, in the high-frequency electromagnetic problem, the convergence has 

improved, and the computational times have been reduced. 
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1． はじめに 

電磁界解析は解析対象のまわりの空間も解析対象とし

なければならないため他の物理現象の解析に比べてメッ

シュの自由度が大きくなりやすい．また電磁界解析で解

くべき方程式には不定性があるため求解には反復法を用

いらざるを得ず，条件数も悪いためその反復回数は非常

に多い．このような問題を解くための反復法としては，不

完全Cholesky分解(Incomplete Cholesky Factorization: ICC) 

[1]を前処理とする共役勾配法(Conjugate Gradient method: 

CG法) [2]や，共役直交共役勾配法(Conjugate Orthogonal CG 

method: COCG法) [3]などが主に用いられている．また近

年では大規模な解析で共役残差法 (Conjugate Residual 

method: CR法 ) [4]から発展した共役直交共役残差法

(Conjugate Orthogonal CR method: COCR法) [5]が反復回数

および計算時間の面で有利なことがわかってきた[6]． 

しかしいまだ電磁界解析において安定かつ高速に解を

得られるとは限らない状況である．より安定かつ高速に

解を得るために，本稿では積型反復法に着目する．積型反

復法は，CG法をエルミート行列以外にも適用できるよう

拡張した双共役勾配法(Bi-Conjugate Gradient method: 

BiCG 法) [7]の収束性を改良することを目的に研究され

た一連の反復法である．また CR 法をエルミート行列以

外にも適用できるよう拡張した双共役残差法 (Bi-

Conjugate Residual method: BiCR 法) [8]や，BiCG法，

BiCR 法を複素対称行列に限定することでシャドウ行列

の更新，係数行列の随伴行列の行列ベクトル積を不要と

した COCG法，COCR法でも同様のスキームで収束性を

改良する手法の研究[9][10][11]が進み，現在ではこれらも

積型反復法に含まれている． 

積型反復法の電磁界解析への適用は文献[12]など，すで

に多くの試みが行われている．本稿では新たにインター

フェース問題を並列反復法で解く階層型領域分割法

(Hierarchical Domain Decomposition method: HDDM)

への積型反復法の適用を試みる．特に本稿では安定化双

共役勾配法(Bi-Conjugate Gradient Stabilized method: 

BiCGSTAB 法) [13]などの安定化系積型反復法の適用を

試みる．数値実験では，実対称行列を解く静磁場問題，複

素対称行列を解く時間調和渦電流問題および高周波電磁

波問題にこれらの反復法を適用し，収束性と計算時間を

比較する． 

2． 積型反復法 

(1) 記号のルール 

・ 行列，多項式：英字大文字．𝐴，𝑅など． 

・ ベクトル：英字小文字．𝑏，𝑥など． 

・ スカラー：ギリシア文字．𝛼，𝛽など． 

・ ステップ数：上付き添え字．𝑥0，𝑟𝑛など． 

・ 転置：𝑇．𝐴𝑇，(𝑟∗)𝑇など． 

・ 共役転置：𝐻．𝐴𝐻，(𝑟∗)𝐻など． 

なお本章と次章では同じ英字を用いていても定義が異

なる(𝑥，𝑦など)． 

(2) CG法，CR法，BiCG法，BiCR法，COCG法，COCR法 

次の連立一次方程式を解くための反復法について考え

る． 

 

𝐴𝑥 = 𝑏. ( 1 ) 

 

ここで，𝐴は係数行列，𝑏は既知ベクトル，𝑥は求めるべき

解ベクトルである． 

まず𝐴がエルミート行列(𝐴 = 𝐴𝐻)である場合を考える．

反復法では解ベクトルの初期値𝑥0を仮定し，漸化式によ

り解ベクトルを修正していく．ただし𝑥𝑛は𝑛次のクリロフ

部分空間から作られる． 

 

𝑥𝑛 ∈ 𝐾𝑛(𝐴; 𝑟0) ≔ Span{𝑟0, 𝐴𝑟0, 𝐴2𝑟0,∙∙∙, 𝐴𝑛−1𝑟0}. ( 2 ) 
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ここで𝑟0は初期残差ベクトルであり，𝑛ステップ目の解ベ

クトル𝑥𝑛に対して𝐾𝑛(𝐴; 𝑟0)に直交する残差ベクトル𝑟𝑛

が次のように定義される． 

 
𝑟𝑛 = 𝑏 − 𝐴𝑥𝑛 . ( 3 ) 

 

修正方向を定める補助ベクトル𝑝𝑛(∈ 𝐾𝑛+1(𝐴; 𝑟0))，修正

量を定めるスカラー𝛼𝑛，𝛽𝑛を用いると，解ベクトルは次

のように更新される． 

 

𝑥𝑛+1 = 𝑥𝑛 + 𝛼𝑛𝑝𝑛      (𝑛 = 0, 1,∙∙∙), ( 4 ) 

𝑟𝑛+1 = 𝑟𝑛 − 𝛼𝑛𝐴𝑝𝑛, ( 5 ) 

𝑝𝑛+1 = 𝑟𝑛+1 + 𝛽𝑛𝑝𝑛. ( 6 ) 

 

ただし， 

 

𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0. ( 7 ) 

 

また CG法では厳密解𝑦との差を最小とするため，𝛼𝑛は次

の関数を最小にするように定められる． 

 

𝑓(𝑥𝑛) =
1

2
{𝑥𝑛 − 𝑦}𝐻𝐴{𝑥𝑛 − 𝑦}. ( 8 ) 

 

𝛽𝑛は𝐴𝑝𝑛と𝑝𝑛+1の直交関係から求められる．一方，CR法

では残差を最小とするため，𝛼𝑛は次の関数を最小にする

ように定められる． 

 

𝑓(𝑥𝑛) =
1

2
(𝐴𝑥𝑛 − 𝑏)𝐻(𝐴𝑥𝑛 − 𝑏). ( 9 ) 

 

𝛽𝑛は𝐴𝑝𝑛と𝐴𝑝𝑛+1の直交関係から求められる． 

残差ベクトルと補助ベクトルは多項式𝑅𝑛，𝑃𝑛を用いて

次のように表せる． 

 

𝑟𝑛 = 𝑅𝑛(𝐴)𝑟0, ( 10 ) 

𝑝𝑛 = 𝑃𝑛(𝐴)𝑟0. ( 11 ) 

 

𝑅𝑛はランチョス多項式と呼ばれる． 

 

𝑅0(𝜆) = 1, ( 12 ) 

𝑅1(𝜆) = (1 − 𝛼0𝜆)𝑅0(𝜆), ( 13 ) 

𝑅𝑛+1(𝜆) = (1 + 𝛼𝑛
𝛽𝑛−1

𝛼𝑛−1
− 𝛼𝑛𝜆) 𝑅𝑛(𝜆) 

                        −𝛼𝑛
𝛽𝑛−1

𝛼𝑛−1 𝑅𝑛−1(𝜆)      (𝑛 = 1, 2,∙∙∙). 

( 14 ) 

 

ここで𝜆は固有値に対応する．また𝑃𝑛は補助多項式と呼ば

れ，𝑅𝑛との間で次の交代漸化式を満たす． 

 

𝑃0(𝜆) = 1, ( 15 ) 

𝑅𝑛(𝜆) = 𝑅𝑛−1(𝜆) − 𝛼𝑛−1𝜆𝑃𝑛−1(𝜆)  (𝑛 = 1, 2,∙∙∙), ( 16 ) 

𝑃𝑛(𝜆) = 𝑅𝑛(𝜆) + 𝛽𝑛−1𝑃𝑛−1(𝜆). ( 17 ) 

 

CG法，CR法ではこれらの多項式で用いる𝛼𝑛，𝛽𝑛が異な

る． 

CG法，CR法をエルミート行列以外にも適用できるよ

う拡張したのがそれぞれ BiCG 法と BiCR 法である．

BiCG法，BiCR法では式( 1 )と双対な次の連立一次方程

式を陰的に解いていることになる． 

 

𝐴𝐻𝑥∗ = 𝑏∗. ( 18 ) 

 

そのため𝛼𝑛，𝛽𝑛の計算にシャドウ残差ベクトル𝑟∗，シャ

ドウ補助ベクトル𝑝∗が必要であり，これらを更新するた

めに𝐴𝐻の行列ベクトル積を行わなければならない． 

 

𝑟∗,𝑛+1 = 𝑟∗,𝑛 − 𝛼𝑛̅̅̅̅ 𝐴𝐻𝑝∗,𝑛, ( 19 ) 

𝑝∗,𝑛+1 = 𝑟∗,𝑛+1 + 𝛽𝑛̅̅̅̅ 𝑝∗,𝑛. ( 20 ) 

 

また残差ベクトルは次のクリロフ部分空間に直交するよ

うに作られる． 

 

𝑟𝑛 ⊥ 𝐾𝑛(𝐴𝐻; 𝑟∗0) ≔ Span{𝑟∗0, 𝐴𝐻𝑟∗0,∙∙∙, (𝐴𝐻)𝑛−1𝑟∗0}. ( 21 ) 

 

𝑟∗0を次のように𝑟0の共役とし，𝐴を複素対称行列とし

て BiCG法，BiCR法のアルゴリズムを整理すると，複素

対称行列に特化した COCG法，COCR法が得られる． 

 

𝑟∗0 = 𝑟0̅̅ ̅. ( 22 ) 

 

COCG法，COCR法ではシャドウベクトルが不要となり， 

𝐴𝐻の行列ベクトル積も不要となる． 

(3) 積型反復法 

BiCG法において次のように加速多項式𝐻𝑛を残差ベク

トルにかけることで収束の加速を図る手法が積型反復法

である． 

 

𝑟𝑛 = 𝐻𝑛(𝐴)𝑅𝑛(𝐴)𝑟0. ( 23 ) 

 

𝐻𝑛は次の 3 項漸化式を満たすように設計される． 

 

𝐻0(𝜆) = 1, ( 24 ) 

𝐻1(𝜆) = (1 − 𝜁0𝜆)𝐻0(𝜆), ( 25 ) 

𝐻𝑛+1(𝜆) = (1 + 𝜂𝑛 − 𝜁𝑛𝜆)𝐻𝑛(𝜆) − 𝜂𝑛𝐻𝑛−1(𝜆) 

                                                                  (𝑛 = 1, 2,∙∙∙). 
( 26 ) 

 

𝜁𝑛，𝜂𝑛は加速パラメータであり，これらの取り方で種々

の積型反復法が構成される．また𝐻𝑛は𝑛次多項式， 

 

𝐺𝑛−1(𝜆) ≔
𝐻𝑛−1(𝜆) − 𝐻𝑛(𝜆)

𝜆
, ( 27 ) 

 

との間に次の交代漸化式を満たす． 

 

𝐺0(𝜆) = 𝜁0, ( 28 ) 

𝐻𝑛(𝜆) = 𝐻𝑛−1(𝜆) − 𝜆𝐺𝑛−1(𝜆)      (𝑛 = 1, 2,∙∙∙), ( 29 ) 

𝐺𝑛(𝜆) = 𝐻𝑛(𝜆) + 𝜂𝑛−1𝐺𝑛−1(𝜆). ( 30 ) 
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同じスキームを BiCR法，COCG法，COCR法にも適

用することができる． 

(4) 安定化系積型反復法 

加速パラメータを次のように取ることを考える[13]． 

 

𝜁𝑛 = arg min
𝜁

|𝑟𝑛+1|, ( 31 ) 

𝜂𝑛 = 0. ( 32 ) 

 

すなわち，残差ベクトルを最小にするように𝜁𝑛を選択す

る．  

BiCG法，BiCR法，COCG法，COCR法に基づいた手

法は，それぞれ BiCGSTAB法，安定化双共役残差法(Bi-

Conjugate Residual Stabilized method: BiCRSTAB法)，

安定化共役直交共役勾配法 (Conjugate Orthogonal 

Conjugate Gradient Stabilized method: COCGSTAB

法)，安定化共役直交共役残差法(Conjugate Orthogonal 

Conjugate Residual Stabilized method: COCRSTAB法)

と呼ばれる． 

図 1 に前処理付きの安定化系積型反復法を示す．4 種

の反復法で異なるのは，3 行目の𝑟∗と，6 行目，12 行目の

( , )の扱いである．違いによる分類を表 1 に示す．𝑟∗は

BiCGSTAB 法， COCGSTAB 法では 𝑟∗0 であり，

BiCRSTAB法，COCRSTAB 法では(𝑀−1)𝐻𝐴𝐻𝑟∗0である．

ただし COCRSTAB 法では𝐴 = 𝐴𝑇かつ𝑀 = 𝑀𝑇であり，

( , ) の扱いから実際には 𝑀−1𝐴𝑟∗0 である． ( , ) は

BiCGSTAB 法，BiCRSTAB 法ではベクトルの内積であ

るので左側のベクトルの転置を取ると同時に共役を取る

が，COCGSTAB法，COCRSTAB法は左側のベクトルで

共役を取らない． 

 

1 𝑥0 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑢𝑒𝑠𝑠, 𝑟0 = 𝑏 − 𝐴𝑥0, 

2 
𝑟∗0 𝑖𝑠 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑟𝑦 𝑣𝑒𝑐𝑡𝑜𝑟,  
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑟∗0)𝐻𝑟0 ≠ 0, 𝑒. 𝑔. , 𝑟∗0 = 𝑟0, 

3 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑟∗, 
4 𝑝0 = 𝑟0, 
5 𝑓𝑜𝑟 𝑛 = 0, 1,∙∙∙, 

6     𝛼𝑛 =
(𝑟∗, 𝑟𝑛)

(𝑟∗, 𝐴𝑀−1𝑝𝑛)
  , 

7     𝑡𝑛 = 𝑟𝑛 − 𝛼𝑛𝐴𝑀−1𝑝𝑛, 

8     𝜁𝑛 =
(𝐴𝑀−1𝑡𝑛)𝐻𝑡𝑛

(𝐴𝑀−1𝑡𝑛)𝐻(𝐴𝑀−1𝑡𝑛)
, 

9     𝑥𝑛+1 = 𝑥𝑛 + 𝛼𝑛𝑀−1𝑝𝑛 + 𝜁𝑛𝑀−1𝑡𝑛, 
10     𝑟𝑛+1 = 𝑡𝑛 − 𝜁𝑛𝐴𝑀−1𝑡𝑛, 

11 
    𝑖𝑓

|𝑟𝑛+1|

|𝑏|
< 𝜖 (𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛)

→ 𝑒𝑛𝑑, 

12     𝛽𝑛 =
𝛼𝑛

𝜁𝑛 ∙
(𝑟∗, 𝑟𝑛+1)

(𝑟∗, 𝑟𝑛)
  , 

13     𝑝𝑛+1 = 𝑟𝑛+1 + 𝛽𝑛(𝑝𝑛 − 𝜁𝑛𝐴𝑀−1𝑝𝑛), 
14 𝑒𝑛𝑑. 

図 1. 前処理付き安定化系積型反復法． 

 

表 1. 安定化系積型反復法の分類． 

 𝑟∗ = 𝑟∗0 𝑟∗ = (𝑀−1)𝐻𝐴𝐻𝑟∗0 

(𝑎, 𝑏) = 𝑎𝐻𝑏 BiCGSTAB BiCRSTAB 

(𝑎, 𝑏) = 𝑎𝑇𝑏 COCGSTAB COCRSTAB 

3． 階層型領域分割法 

階層型領域分割法は領域分割法[14]-[16]を並列計算機

環境に効率よく実装するための 1 手法である．大規模問

題を効率よく数値計算することのできる手法としてよく

知られており，分散メモリ環境で良好な並列効率を得ら

れることが期待できる[17]．階層型領域分割法は大規模な

構造解析[18]や熱伝導解析[19]に適用され，また電磁界解

析でも数値人体モデルの高周波電磁波解析について2016

年に 300 億自由度[20]，2019 年に 1,300 億自由度[21]の

解析に成功している． 

 

 
図 2. 領域分割． 

 

 
図 3. 自由度の静的縮約． 

 

 
図 4. 𝑆の行列ベクトル積． 

 

 
図 5. 𝑆𝐻の行列ベクトル積． 

 

階層型領域分割法では解析領域を並列数よりもはるか

に多くの小領域(1 小領域あたり数百自由度程度)に分割

し，自由度を領域分割によって生じる領域間のインター

フェース自由度(図 2)に静的縮約したインターフェース
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：小領域での有限要素計算 

𝑦𝑖 = ൫𝑆𝑖൯
𝐻

𝑥𝑖 = ቄ𝐾𝐵𝐵
𝑖 𝐻 − 𝐾𝐼𝐵

𝑖 𝐻൫𝐾𝐼𝐼
𝑖 𝐻൯

−1
൫𝐾𝐼𝐵

𝑖 𝑇൯
𝐻

ቅ 𝑥𝑖  

= ෍ 𝑅𝐵
𝑖 𝑇൫𝑆𝑖൯

𝐻
𝑅𝐵

𝑖

1

𝑖=0

∙ 𝑥 = ෍ 𝑅𝐵
𝑖 𝑇൫𝑆𝑖൯

𝐻
𝑥𝑖

1

𝑖=0

= ෍ 𝑅𝐵
𝑖 𝑇𝑦𝑖

1

𝑖=0

, 
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問題(図 3)を並列反復法で解く．解くべき問題そのものが

変わるため並列性能を阻害する不完全Cholesky分解(IC)

前処理を使わずとも収束解を得られる．また分割数を変

えずに並列数を変えられるため並列反復法の収束性に並

列数は影響しない．一方，解くべき行列𝑆が密であり，作

成してしまうと効率的な解析ができなくなるので，並列

反復法で必要な𝑆の行列ベクトル積は小領域での有限要

素計算の結果の重ね合わせ(図 4)で行っている．また，元

の係数行列𝐴が対称行列であることから𝑆も対称行列であ

ることを利用して，𝑆𝐻の行列ベクトル積は 図 5 のよう

に求める．𝑆の行列ベクトル積との違いは，部分領域の有

限要素解析の際に𝑥𝑖の共役を取ること，𝑦𝑖を求める際，最

後に共役を取ること，の 2 点である． 

4． 数値計算例 

数値計算例として TEAM20 モデル[22]の静磁場解析

(Magnetostatic)，無限長ソレノイドコイル[23]の A-法で

の時間調和渦電流解析(TH_Eddy)，TEAM29 モデル[24]

の高周波電磁波解析(HF_EM)をそれぞれの反復法で解

く．それぞれの有限要素方程式の特徴を表 2 に示す．モ

デルはいずれも四面体に分割され，それぞれの要素数は

857,468，843,594，838,803，自由度はいずれも約 100 万

自由度である．解析には計算機(Intel Core i9-10900X 

[3.70GHz / 10Core]，Intel X299 chipset，256 GBメモ

リ[DDR4-2666 32 GB 8 枚]) 1 台を用い，内部でMPI に

よる並列処理を行う．解析には 8 コア用いることとし，

それぞれのメッシュは 8 parts，各 part 内は 1,000 

subdomains に分割する．静磁場解析は，CG法，CR法，

BiCGSTAB 法，BiCRSTAB 法に基づく階層型領域分割

法で解く．時間調和渦電流解析，高周波電磁波解析は

COCG法，COCR法，BiCGSTAB法，BiCRSTAB法，

COCGSTAB法，COCRSTAB 法に基づく階層型領域分割

法で解く．前処理はいずれも簡易対角スケーリング前処

理[25]である．収束判定値はそれぞれ静磁場解析 1.0e-05，

時間調和渦電流解析 1.0e-03，高周波電磁波解析 1.0e-07

とする．部分領域の有限要素解析には，静磁場解析では

ICC 前処理(加速係数 1.2)付き CG 法(収束判定値 1.0e-

09)，時間調和渦電流解析では ICC 前処理(加速係数 1.2)

付き COCG法(収束判定値 1.0e-09)，高周波電磁波解析で

は直接法(LDL分解)をそれぞれ用いる． 

 

表 2. 有限要素方程式の特徴． 

 Matrix Singular DOFs on 

Magnetostatic 
Symmetric 

Real 
Yes Edges 

TH_Eddy 
Symmetric 

Complex 
Yes 

Edges 

Apexes 

HF_EM 
Symmetric 

Complex 
No Edges 

DOFs: Degrees of freedom 

 

 
(a) Magnetostatic analysis. 

 
(b) Time-harmonic eddy current analysis. 

 
(c) High-frequency electromagnetic analysis. 

図 6. 安定化系積型反復法の収束履歴． 

 

収束履歴，収束までの反復回数と計算時間をそれぞれ

図 6，表 3 に示す．収束履歴には，比較のため CG 法，

CR 法，COCG 法，COCR 法の履歴も描画している．ま

た収束の特徴を確認するため，収束後の履歴も描画して

いる．静磁場解析では CG法，CR法よりも積型反復法の

収束までの反復回数が減っているが，計算時間は短くな

らなかった．時間調和渦電流解析では BiCGSTAB 法，

COCGSTAB法の反復回数が COCG法，COCR法より少
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なくなったが，計算時間は短くなっていない．一方，高周

波電磁波解析では COCG法，COCR法よりも積型反復法

が早く収束し，計算時間も短くなった．収束までの計算時

間は COCG法と比較して概ね 9 分の 1，COCR法と比較

して概ね 2 分の 1 であった．また残差ノルムは有効数字

7桁で出力させている．BiCGSTAB法と COCGSTAB法，

BiCRSTAB法と COCRSTAB 法は，時間調和渦電流解析

では 1,000 反復まで履歴がよく一致しているが，高周波

電磁波解析では途中まで履歴がよく一致し反復が進むと

次第にずれていくことが見て取れる． 

 

表 3. 収束までの反復回数と計算時間． 

(a) Magnetostatic analysis. 

 # of iterations Time [s] 

CG 481 53.5 

CR 447 50.1 

BiCGSTAB 361 80.4 

BiCRSTAB 365 81.1 

(b) Time-harmonic eddy current analysis. 

 # of iterations Time [s] 

COCG 266 78.7 

COCR 261 77.3 

BiCGSTAB 241 142 

BiCRSTAB 285 168 

COCGSTAB 241 142 

COCRSTAB 285 168 

(c) High-frequency electromagnetic analysis. 

 # of iterations Time [s] 

COCG 190 25.9 

COCR 43 6.46 

BiCGSTAB 8 2.84 

BiCRSTAB 8 2.97 

COCGSTAB 8 2.85 

COCRSTAB 8 2.96 

 

5． おわりに 

安定化系積型反復法に基づく階層型領域分割法の効果

を検証した．静磁場解析，時間調和渦電流解析では反復回

数が減るケースがあっても計算時間の短縮まではできな

かったが，高周波電磁波解析では COCG法，COCR法よ

りも反復回数，計算時間とも削減できた． 

今後はGPBiCG法のような一般化系積型反復法などの

階層型領域分割法への適用に取り組む． 
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