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This study examined the applicability of factorization machines with quantum annealing (FMQA)
to the field of landslide risk assessment for two specific black-box optimization problems, hyper-
parameter optimization (HPO) for metamodeling and metamodel-based simulation optimization
(MBSO) targeting granular flow simulation using discrete element method (DEM). These two
optimization problems are solved successively: HPO is first performed to determine the hyperpa-
rameters of the Gaussian process regression (GPR) metamodel, which is then is used as a low-
cost, fast approximate solver of granular flow simulations for MBSO. After conducting a series of
granular flow simulations using DEM, a metamodel is created that outputs a risk index of inter-
est, the run-out distance, from its input parameters by employing GPR with two hyperparameters,
length-scale and signal variance. Subsequently, HPO is performed to obtain the optimal set of
hyperparameters by applying FMQA. Finally, using the metamodel created by each optimization
method as an approximate solver for DEM simulations, MBSO is performed to find the optimal
target output, the maximum run-out distance, in the space of physical input parameters for risk
assessment.
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1. INTRODUCTION problems that use metamodeling: hyperparameter opti-
mization (HPO) and optimization that searches for ef-
fective factors for metamodel-based simulation, which is
called metamodel-based simulation optimization (MBSO),
respectively. The common used methods for perform-
ing black-box optimization are random search (RS) and

Bayesian optimization (BO).

Recent advances in computational mechanics have made
high-precision numerical simulation an indispensable tool
for hazard risk assessment. Among them, the discrete el-
ement method (DEM)[1], which models granular flow at
the particle level, has been widely used in the field of land-
slide hazards. Regarding the use of DEM simulation in this
field, it is expected that the exploration of parameter set-
tings for high-risk target outputs (e.g., run-out distance[2],
impact force, etc.) will provide comprehensive intelligence
for risk assessment. However, the expensive computational
cost of DEM simulations precludes such insight. Specifi-
cally, it is impossible to fully explore the entire parameter
space, even when multiple simulation runs are conducted
to ascertain the global optimum.

As a new streamline, D-Wave Systems has recently de-
veloped a device named D-Wave 2000Q[3] that physically
implements quantum annealing (QA)[4]. The system is
essentially an Ising machine that processes binary vari-
ables and can be utilized to search for low-energy solutions
of quadratic unconstrained binary optimization (QUBO)
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The advent of metamodeling, a kind of mathemati-
cal regression model for numerical simulation, has over-
come the computational cost obstacles and made opti-
mization more efficient. It identifies and estimates the
relationship between the inputs and outputs of the sim-
ulation model, forming a mathematical function that is
used to evaluate possible solutions in the optimization
process. There are two typical black-box optimization

models. Recently, factorization machines with Quantum
annealing (FMQA) [5] provides a prospective approach for
black-box optimization problems using quantum anneal-
ing. Previous studies have insufficiently discussed the suit-
ability of FMQA in HPO and MBSO in the field of land-
slide risk assessment. Hence, the objective of this study is
to examine the applicability of QA in HPO and MBSO to
the field of landslide hazard/risk assessment.
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2. Granular flow simulation and GPR-based meta-
model

The run-out distance of particles in granular flow is typi-
cally an important index for landslide risk assessment, and
it is taken as the target output of the MBSO problem in this
study. In this context, Xiao et al.[2] performed 56 cases

of DEM granular flow simulations to create a metamodel, O4m |

which was referred to as the ‘surrogate model” in the paper, 04m 048m

and analyzed the effect of four parameters on the run-out

distance of the granular flow. The settings of the DEM sim- (a) Geometory setup
ulations and the sampling method for the input parameters

involved in this study are basically consistent with theirs. A
After outlining the simulation conditions, we will explain

how to use Gaussian process regression (GPR) to create a

metamodel using these simulation cases as training data.

(1) DEM simulation conditions

The particle model employed in this study is a polygon

particle model that is close to an ellipsoid as shown in Fig. (b) Particle release
1. The shape and dimensions of this particle model are
shown in the same figure. Here, the length of the minor Fig. 2 Dimensions of the DEM slope model.

axis d is 2 cm, and the aspect ratios of the length and width
are 1.50 and 0.75, respectively. Fig. 2 shows the slope
model for the DEM simulations, with an inclination an-
gle of 45°. The dimensions of the collector are shown in
Fig. 2.

In our previous study[2], a series of DEM simulations
were performed for each of four different input parame-
ters: friction angle between elements (FABE), friction an-
gle with bottom surface (FABS), coefficient of restitution
(COR), and spring coefficient (SC), and the target out-
put was the runout distance. Each simulation case con-
tained approximately 1300 polygon particles, and the av-
erage computation time was 45 minutes. Thus, it is effi-
cient to create a metamodel with the runout distance as the
target output for the four input parameters and to perform
optimization based on this model, and it makes sense to
investigate the applicability of FMQA in that optimization
process.

Fig. 3 Target output image for the MBSO problem
(90% run-out distance).

(2) Sampling of input parameters

The ranges of the four input parameters are determined
with reference to the authors’ experience and values em-
Horizontal aspect ratio: 0.75 ployed in related studies[2]. To minimize the sampling
bias within each of these ranges, an appropriate sampling
method must be employed to ensure that the DEM simula-
tion case comprehensively covers the parameter space. To
0.75d meet this requirement, Latin hypercube sampling (LHS) is
adopted in this study. The number of simulation cases for

training the metamodel in this study is 56.
d d In general, granular flows represented in DEM simu-
(a) Side view (b) Top view lations have a high uncertainty in the run-out distance
because individual particles move independently of each
Fig. 1 Shape and dimensions of the particle model. other at the front. In particular, DEM-based MBSO com-
pares favorably with direct optimization by simulation in
terms of efficiency, but its accuracy does not fully restore

Vertical aspect ratio: 1.50

1.50d
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the numerical simulation itself. For this reason, a total
of 10 metamodels with different target outputs were cre-
ated, compared and examined in the study by Xiao et al.
[2]. Here, one target output was defined for each 10th per-
centile from the 10th to the 100th percentile of the maxi-
mum run-out distance calculated for each mass ratio. The
metamodel with 100% run-out distance (also called the
maximum run-out distance of all particles) had an error of
12-13%, while this error was only approximately 6% in the
90% run-out distance scenario. Therefore, it would be dif-
ficult to predict the 100% run-out distance in a metamodel
for risk assessment using DEM. Considering the efficiency,
accuracy, and validity of the risk assessment, the target out-
put of this study is defined as the 90% run-out distance and
is denoted by lgg. As an example, Fig. 3 shows Lg in red.

In summary, four input parameters (FABE, FABS, COR,
SC) and the target output (90% run-out distance) are used
to create our metamodels for MBSO, each of which is in-
tended to minimize the loss from the DEM simulation re-
sult.

(3) GPR-based metamodel

This study focuses on the physical processes of land-
slides, and the dependence of physical input parameters
(friction, restitution and spring coefficient) on the target
output. Gaussian process regression (GPR)[6] is known to
provide a smooth regression for the target output, which
accords well with the physical processes involved in this
study. Therefore, GPR is employed to create the meta-
model in this study.

GPR is a powerful Bayesian approach to regression
problems with the reasonable assumption that the corre-
lation between two points decreases with distance between
the points increases. The most common kernel is the radial
basis function (RBF) kernel, which is defined as

’ ZB—CB/ 2
k(x,x ) = J}% exp <|2/\2|> , €))

where k(x, zr:') is the covariance function that models
the dependence between function values at different input
points,  and 2 . The RBF is known for providing an ex-
pressive kernel for modeling smooth and stationary black-
box functions. Here, by varying the two hyperparameters,
A (Iength-scale) and JJ% (signal variance), the prior correla-
tion between points can be increased or decreased, thereby
controlling the accuracy and robustness of the metamodel.

The common method for optimizing these hyperparam-
eters is to maximize the marginal (logarithmic) likelihood
using the gradient-ascent method. In the HPO of this study,
its performance was compared to that of FMQA.

3. FMQA for optimization problems

(1) Hyperparameter optimization in the metamodel
Similar to the optimization setup in the previous section,

hyperparametric optimization (HPO) in this study is per-

formed on the length scale A and variance 0]20, with their

initial ranges both set to [1074,107].
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To evaluate the performance of machine learning mod-
els, two types of loss functions are usually used: training
loss Liyain and validation 10ss Lyajidation- In this study,
Ly;ain indicates the fitting degree of the created GPR meta-
model with respect to the training data, and its value is cal-
culated using the root mean square error (RMSE) as fol-
lows:

M

o 1 o (train)yo
Livain = M;(yi — g2, )

where M denotes the number of DEM simulation cases for
training[2] and is set to 56. Additionally, yftmm) and y;
are the simulation result and the prediction of the meta-
model for the i-th training data, respectively. In con-
trast, Lyalidation indicates the predictive performance of
the metamodel, and is also used as an index to assess
whether the metamodel is overfitting. In addition to the 56
sets of training data, 10 data points are randomly sampled
in the parameter space and additional 10 DEM simulation
cases are performed to generate 10 sets of validation data
(i =1,---,m = 10). Then, the validation loss is calcu-
lated as

m

o l ~  (validation)yo
Lvahdatlon - m ; (yz yl ) 9 (3)
where ngvalidation)
idation data.

In this study, FMQA is applied to create a metamodel
that adequately approximates the simulation results for an
arbitrary set of four input parameters. To avoid overfitting
to the training data, we designed the following multiobjec-
tive optimization metric:

shows the simulation result on i-th val-

L= Ltrain + aLvalidationa (4)

where the parameter « is introduced to control the impor-
tance of Lyalidation. In general, the robustness of machine
learning models is more important, so « is set to 10 in this
study in order to create an optimal metamodel with gen-
eralizability. Fig. 4 shows the response surface of L with
length-scale A and variance UJ% as independent variables.
Here, the colors reflect the magnitude of L, and the hor-
izontal and vertical axes and the magnitude of L are ex-
pressed on a logarithmic scale with a base of 10. It can
be seen from this figure that the hyperparameter settings
have a significant impact on the loss L. When the variance
ranges from 103 to 10? and the length-scale is in [0.1, 1],
L appears to be at a minimum.

Under the above setup, FMQA is used to search for the
minimum value of the loss L defined by Eq. (4) in the
two-dimensional hyperparameter space. Fig. 5 illustrates
the FMQA search process with a representative result of
the FMQA performed in this study. Here, the red points
are the initial training data and the blue points are the ob-
served positions of FMQA during the process. It should be
noted that here the training data are not the results of the
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Fig. 4 Response surface of loss function with hyperpa-
rameters.

DEM simulations used to train the GPR metamodel but
rather the initial samples in the hyperparameter space in
Fig. 4. Since there is no general rule to define the number
of iterations for FMQA, we define the number of initial
data and evaluations in this study as 20 and 50, respec-
tively. The final result of the FMQA search is 0.289, and
the corresponding position in the parameter space is indi-
cated by the white dot in the red box in the figure. Fig.
5 shows that FMQA converges to the global minimum at
(02, X) = (10*9,107%2) rather than the local minimum at
(O’é, A) = (1071-9,1.0) after 70 evaluations, exemplifying
FMQA'’s high optimization ability.
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Fig. 5 FMQA search process in HPO.

Random search (RS) and Bayesian optimization (BO)
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are also performed for HPO as a comparison with the
FMQA optimization performance. Note that the optimiza-
tion performances of BO and FMQA vary depending on
the initial points which are selected randomly, hence 10 in-
dependent optimization experiments for each method are
conducted in this study to compare the optimization per-
formances of these two methods and RS. Since the opti-
mization performance of BO and FMQA depends on the
randomly selected initial points, this study performs 10 in-
dependent optimization trials for each method in order to
compare the optimization performance of these two meth-
ods and that of RS. Fig. 6 shows the evaluation histories
of these optimization trials. Here, the vertical axis rep-
resents the minimum loss explored by each method, and
the horizontal axis represents the total number of evalua-
tions. The solid line in the figure represents the average
performance of each method over 10 trials, and the width
of each color band corresponds to the range between the
best and worst performance of each method. The eval-
uation in BO and FMQA is divided into initial data and
subsequent repeated observations. This is why FMQA and
BO perform consistently in the first 20 evaluations in this
figure. The dashed line in Fig. 6 is the optimization result
of the gradient-ascent method, with a loss of 0.407.

----- Log-marginal likelihood
—— Bayesian optimization
— FMQA

—— Random search

Loss

0.4

0.2

0 10 20 30 40 50 60 70
i-th evaluation

Fig. 6 Evaluation histories of FMQA.

The optimization results with RS shows that it achieves
performance almost equal to that of the gradient-ascent
method after 70 evaluations, but it has the widest color
band of the three methods, indicating that it has the highest
uncertainty. FMQA explores the loss below 0.407 around
the 5th observation. Within a total of 70 evaluations,
FMQA searches for a minimum loss value of 0.289, the
best performance among the three methods. This section
addressed the first problem in this study: hyperparameter
optimization of the metamodel. In HPO, BO and FMQA
exhibit insignificant strength compared to the exhaustive
search method (RS), which can be attributed to the two-
dimensional hyperparameter space. In the next subsection,
the performances of FMQA, BO and RS are compared for
a 4D MBSO problem using the created GPR metamodel
with optimized hyperparameters.

(2) Metamodel-based simulation optimization
In this subsection, another FMQA is applied to the meta-
model to search for the maximum 90% run-out distance
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in the space of physical input parameters (FABE, FABS,
COR, SC) for optimal risk assessment.

As an example of MBSO here, we consider the problem
of applying FMQA to the metamodel to find the physical
input parameters (FABE, FABS, COR, SC) corresponding
to the maximum 90% runout distance.

In accordance with Xiao et al. [2], the key parameters
in determining run-out distance were FABS and COR. For
visualization, Fig. 7 displays the GPR metamodel as a 3D
response surface in contour format. Here, the horizontal
and vertical axes are FABS and COR, respectively, and
the color indicates the magnitude of the 90% run-out dis-
tance. As seen from the figure, the optimum solution for
this MBSO example is intuitive to explore, but it is suffi-
cient for verifying the performance of FMQA.

1.0 \ 1.23

%25

o
o

1.01

°
o

Coefficient of restitution
o
>

[w] soueysip Ino-uni %06

e
N

0.0 0.45

0.0 0.2 0.4 0.6 0.8 1.0
Friction angle with bottom surface

Fig. 7 Response surface of the 90% run-out distance
with key physical input parameters (FABS,
COR).

For MBSO using FMQA, BO and RS separately, 10 op-
timization trials are performed independently with differ-
ent initial data arrangements. In a single FMQA optimiza-
tion trial, 100 evaluations are performed with 10 initial
data points and 90 subsequent iterative evaluations. Fig.
8 illustrates the FMQA search process for a representative
result of the FMQA. The optimization results converge to
the brown point in the red box. This point corresponds to
(FABE, FABS, COR, SC) = (0, 1, 1, 0.872) in the physi-
cal parameter space, corresponding to a global maximum
of 1.3681 m. As seen from Fig. 8, the local maximum
(FABS, COR) = (0,1) was evaluated in the physical pa-
rameter space at a certain iterative step, but the global min-
imum was eventually selected. To further confirm the per-
formance of FMQA, Fig. 9 compares the optimization his-
tory with those of BO and RS. On this particular MBSO
problem, FMQA performed almost the same as BO. In-
deed, these two performances are approximately 18% bet-
ter than those of RS. FMQA'’s best performance over 10
independent runs was slightly better than BO’s, but BO
converged faster and more consistently.

(3) Discussion
To obtain a globally optimum solution to a black-box
function, global optimization algorithms generally need
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Fig. 8 FMQA search process in MBSO.
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Fig. 9 Evaluation histories of FMQA for MBSO.

to balance exploration and exploitation, which is called
the ‘exploration-exploitation trade-off’. This trade-off is
achieved through the two respective acquisition functions:
the commonly used upper confidence bound (UCB) for BO
and the FM model function, which is updated with each
evaluation, for FMQA. In general, the focus on exploration
helps the optimization method escape local optimum solu-
tions and explore the entire parameter space in search of
the global optimum solution.

In the HPO and MBSO problems in this study, the local
optimum solutions were in the range (07, A) = (1071,1)
and (FABS, COR) = (0, 1), respectively. As seen in
Figs. 5 and 8, FMQA explores the locations of uncertainty
throughout the optimization process and eventually con-
verges to the global optimum. These results are a good il-
lustration of the exploration-exploitation trade-off and the
strength of FMQA. Although it is not the main objective
to judge the superiority of methods, it is meaningful to ex-
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plore the possibilities of FMQA by comparing it with other
methods, and we will continue to study its applicability to
the field of landslide risk assessment.

4. Conclusion

This study examined the applicability of FMQA for
two optimization problems, hyperparameter optimization
(HPO) for metamodeling and metamodel-based simulation
optimization (MBSO) targeting granular flow simulation
using DEM.

Daring to choose simple HPO and MBSO problems as
examples for comparative studies, the results showed that
FMQA using an Ising machine was equivalent to Bayesian
optimization (BO), a state-of-the-art optimization algo-
rithm, and was applicable to the field of landslide risk as-
sessment. As quantum computers are expected to be expo-
nentially faster than classical computers, the value of this
study is that it provides a basis for direct application of
QA to high-dimensional complex HPO and MBSO in the
future as hardware is developed.
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