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This study examined the applicability of factorization machines with quantum annealing (FMQA)

to the field of landslide risk assessment for two specific black-box optimization problems, hyper-

parameter optimization (HPO) for metamodeling and metamodel-based simulation optimization

(MBSO) targeting granular flow simulation using discrete element method (DEM). These two

optimization problems are solved successively: HPO is first performed to determine the hyperpa-

rameters of the Gaussian process regression (GPR) metamodel, which is then is used as a low-

cost, fast approximate solver of granular flow simulations for MBSO. After conducting a series of

granular flow simulations using DEM, a metamodel is created that outputs a risk index of inter-

est, the run-out distance, from its input parameters by employing GPR with two hyperparameters,

length-scale and signal variance. Subsequently, HPO is performed to obtain the optimal set of

hyperparameters by applying FMQA. Finally, using the metamodel created by each optimization

method as an approximate solver for DEM simulations, MBSO is performed to find the optimal

target output, the maximum run-out distance, in the space of physical input parameters for risk

assessment.
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1. INTRODUCTION

Recent advances in computational mechanics have made

high-precision numerical simulation an indispensable tool

for hazard risk assessment. Among them, the discrete el-

ement method (DEM)[1], which models granular flow at

the particle level, has been widely used in the field of land-

slide hazards. Regarding the use of DEM simulation in this

field, it is expected that the exploration of parameter set-

tings for high-risk target outputs (e.g., run-out distance[2],

impact force, etc.) will provide comprehensive intelligence

for risk assessment. However, the expensive computational

cost of DEM simulations precludes such insight. Specifi-

cally, it is impossible to fully explore the entire parameter

space, even when multiple simulation runs are conducted

to ascertain the global optimum.

The advent of metamodeling, a kind of mathemati-

cal regression model for numerical simulation, has over-

come the computational cost obstacles and made opti-

mization more efficient. It identifies and estimates the

relationship between the inputs and outputs of the sim-

ulation model, forming a mathematical function that is

used to evaluate possible solutions in the optimization

process. There are two typical black-box optimization

problems that use metamodeling: hyperparameter opti-

mization (HPO) and optimization that searches for ef-

fective factors for metamodel-based simulation, which is

called metamodel-based simulation optimization (MBSO),

respectively. The common used methods for perform-

ing black-box optimization are random search (RS) and

Bayesian optimization (BO).

As a new streamline, D-Wave Systems has recently de-

veloped a device named D-Wave 2000Q[3] that physically

implements quantum annealing (QA)[4]. The system is

essentially an Ising machine that processes binary vari-

ables and can be utilized to search for low-energy solutions

of quadratic unconstrained binary optimization (QUBO)

models. Recently, factorization machines with Quantum

annealing (FMQA) [5] provides a prospective approach for

black-box optimization problems using quantum anneal-

ing. Previous studies have insufficiently discussed the suit-

ability of FMQA in HPO and MBSO in the field of land-

slide risk assessment. Hence, the objective of this study is

to examine the applicability of QA in HPO and MBSO to

the field of landslide hazard/risk assessment.
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2. Granular flow simulation and GPR-based meta-

model

The run-out distance of particles in granular flow is typi-

cally an important index for landslide risk assessment, and

it is taken as the target output of the MBSO problem in this

study. In this context, Xiao et al.[2] performed 56 cases

of DEM granular flow simulations to create a metamodel,

which was referred to as the ‘surrogate model’ in the paper,

and analyzed the effect of four parameters on the run-out

distance of the granular flow. The settings of the DEM sim-

ulations and the sampling method for the input parameters

involved in this study are basically consistent with theirs.

After outlining the simulation conditions, we will explain

how to use Gaussian process regression (GPR) to create a

metamodel using these simulation cases as training data.

(1) DEM simulation conditions

The particle model employed in this study is a polygon

particle model that is close to an ellipsoid as shown in Fig.

1. The shape and dimensions of this particle model are

shown in the same figure. Here, the length of the minor

axis d is 2 cm, and the aspect ratios of the length and width

are 1.50 and 0.75, respectively. Fig. 2 shows the slope

model for the DEM simulations, with an inclination an-

gle of 45◦. The dimensions of the collector are shown in

Fig. 2.

In our previous study[2], a series of DEM simulations

were performed for each of four different input parame-

ters: friction angle between elements (FABE), friction an-

gle with bottom surface (FABS), coefficient of restitution

(COR), and spring coefficient (SC), and the target out-

put was the runout distance. Each simulation case con-

tained approximately 1300 polygon particles, and the av-

erage computation time was 45 minutes. Thus, it is effi-

cient to create a metamodel with the runout distance as the

target output for the four input parameters and to perform

optimization based on this model, and it makes sense to

investigate the applicability of FMQA in that optimization

process.

d d

1.50d

0.75d

Vertical aspect ratio: 1.50

Horizontal aspect ratio: 0.75

(a) Side view (b) Top view

Fig. 1 Shape and dimensions of the particle model.

0.48 m
0.4 m

0.4 m

(a) Geometory setup

(b) Particle release

Fig. 2 Dimensions of the DEM slope model.

l
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Fig. 3 Target output image for the MBSO problem

(90% run-out distance).

(2) Sampling of input parameters

The ranges of the four input parameters are determined

with reference to the authors’ experience and values em-

ployed in related studies[2]. To minimize the sampling

bias within each of these ranges, an appropriate sampling

method must be employed to ensure that the DEM simula-

tion case comprehensively covers the parameter space. To

meet this requirement, Latin hypercube sampling (LHS) is

adopted in this study. The number of simulation cases for

training the metamodel in this study is 56.

In general, granular flows represented in DEM simu-

lations have a high uncertainty in the run-out distance

because individual particles move independently of each

other at the front. In particular, DEM-based MBSO com-

pares favorably with direct optimization by simulation in

terms of efficiency, but its accuracy does not fully restore

2
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the numerical simulation itself. For this reason, a total

of 10 metamodels with different target outputs were cre-

ated, compared and examined in the study by Xiao et al.

[2]. Here, one target output was defined for each 10th per-

centile from the 10th to the 100th percentile of the maxi-

mum run-out distance calculated for each mass ratio. The

metamodel with 100% run-out distance (also called the

maximum run-out distance of all particles) had an error of

12-13%, while this error was only approximately 6% in the

90% run-out distance scenario. Therefore, it would be dif-

ficult to predict the 100% run-out distance in a metamodel

for risk assessment using DEM. Considering the efficiency,

accuracy, and validity of the risk assessment, the target out-

put of this study is defined as the 90% run-out distance and

is denoted by l90. As an example, Fig. 3 shows L90 in red.

In summary, four input parameters (FABE, FABS, COR,

SC) and the target output (90% run-out distance) are used

to create our metamodels for MBSO, each of which is in-

tended to minimize the loss from the DEM simulation re-

sult.

(3) GPR-based metamodel

This study focuses on the physical processes of land-

slides, and the dependence of physical input parameters

(friction, restitution and spring coefficient) on the target

output. Gaussian process regression (GPR)[6] is known to

provide a smooth regression for the target output, which

accords well with the physical processes involved in this

study. Therefore, GPR is employed to create the meta-

model in this study.

GPR is a powerful Bayesian approach to regression

problems with the reasonable assumption that the corre-

lation between two points decreases with distance between

the points increases. The most common kernel is the radial

basis function (RBF) kernel, which is defined as

k(x,x
′

) = σ2
f exp

(

−
|x− x

′

|2

2λ2

)

, (1)

where k(x,x
′

) is the covariance function that models

the dependence between function values at different input

points, x and x

′

. The RBF is known for providing an ex-

pressive kernel for modeling smooth and stationary black-

box functions. Here, by varying the two hyperparameters,

λ (length-scale) and σ2
f (signal variance), the prior correla-

tion between points can be increased or decreased, thereby

controlling the accuracy and robustness of the metamodel.

The common method for optimizing these hyperparam-

eters is to maximize the marginal (logarithmic) likelihood

using the gradient-ascent method. In the HPO of this study,

its performance was compared to that of FMQA.

3. FMQA for optimization problems

(1) Hyperparameter optimization in the metamodel

Similar to the optimization setup in the previous section,

hyperparametric optimization (HPO) in this study is per-

formed on the length scale λ and variance σ2
f , with their

initial ranges both set to
[

10−4, 104
]

.

To evaluate the performance of machine learning mod-

els, two types of loss functions are usually used: training

loss Ltrain and validation loss Lvalidation. In this study,

Ltrain indicates the fitting degree of the created GPR meta-

model with respect to the training data, and its value is cal-

culated using the root mean square error (RMSE) as fol-

lows:

Ltrain =

√

√

√

√

1

M

M
∑

i=1

(ŷi − y
(train)
i )2, (2)

where M denotes the number of DEM simulation cases for

training[2] and is set to 56. Additionally, y
(train)
i and ŷi

are the simulation result and the prediction of the meta-

model for the i-th training data, respectively. In con-

trast, Lvalidation indicates the predictive performance of

the metamodel, and is also used as an index to assess

whether the metamodel is overfitting. In addition to the 56

sets of training data, 10 data points are randomly sampled

in the parameter space and additional 10 DEM simulation

cases are performed to generate 10 sets of validation data

(i = 1, · · · ,m = 10). Then, the validation loss is calcu-

lated as

Lvalidation =

√

√

√

√

1

m

m
∑

i=1

(ŷi − y
(validation)
i )2, (3)

where y
(validation)
i shows the simulation result on i-th val-

idation data.

In this study, FMQA is applied to create a metamodel

that adequately approximates the simulation results for an

arbitrary set of four input parameters. To avoid overfitting

to the training data, we designed the following multiobjec-

tive optimization metric:

L = Ltrain + αLvalidation, (4)

where the parameter α is introduced to control the impor-

tance of Lvalidation. In general, the robustness of machine

learning models is more important, so α is set to 10 in this

study in order to create an optimal metamodel with gen-

eralizability. Fig. 4 shows the response surface of L with

length-scale λ and variance σ2
f as independent variables.

Here, the colors reflect the magnitude of L, and the hor-

izontal and vertical axes and the magnitude of L are ex-

pressed on a logarithmic scale with a base of 10. It can

be seen from this figure that the hyperparameter settings

have a significant impact on the loss L. When the variance

ranges from 103 to 104 and the length-scale is in [0.1, 1],
L appears to be at a minimum.

Under the above setup, FMQA is used to search for the

minimum value of the loss L defined by Eq. (4) in the

two-dimensional hyperparameter space. Fig. 5 illustrates

the FMQA search process with a representative result of

the FMQA performed in this study. Here, the red points

are the initial training data and the blue points are the ob-

served positions of FMQA during the process. It should be

noted that here the training data are not the results of the

3
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Fig. 4 Response surface of loss function with hyperpa-

rameters.

DEM simulations used to train the GPR metamodel but

rather the initial samples in the hyperparameter space in

Fig. 4. Since there is no general rule to define the number

of iterations for FMQA, we define the number of initial

data and evaluations in this study as 20 and 50, respec-

tively. The final result of the FMQA search is 0.289, and

the corresponding position in the parameter space is indi-

cated by the white dot in the red box in the figure. Fig.

5 shows that FMQA converges to the global minimum at

(σ2
f , λ) = (104.0, 10−0.2) rather than the local minimum at

(σ2
f , λ) = (10−1.0, 1.0) after 70 evaluations, exemplifying

FMQA’s high optimization ability.
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Fig. 5 FMQA search process in HPO.

Random search (RS) and Bayesian optimization (BO)

are also performed for HPO as a comparison with the

FMQA optimization performance. Note that the optimiza-

tion performances of BO and FMQA vary depending on

the initial points which are selected randomly, hence 10 in-

dependent optimization experiments for each method are

conducted in this study to compare the optimization per-

formances of these two methods and RS. Since the opti-

mization performance of BO and FMQA depends on the

randomly selected initial points, this study performs 10 in-

dependent optimization trials for each method in order to

compare the optimization performance of these two meth-

ods and that of RS. Fig. 6 shows the evaluation histories

of these optimization trials. Here, the vertical axis rep-

resents the minimum loss explored by each method, and

the horizontal axis represents the total number of evalua-

tions. The solid line in the figure represents the average

performance of each method over 10 trials, and the width

of each color band corresponds to the range between the

best and worst performance of each method. The eval-

uation in BO and FMQA is divided into initial data and

subsequent repeated observations. This is why FMQA and

BO perform consistently in the first 20 evaluations in this

figure. The dashed line in Fig. 6 is the optimization result

of the gradient-ascent method, with a loss of 0.407.

Fig. 6 Evaluation histories of FMQA.

The optimization results with RS shows that it achieves

performance almost equal to that of the gradient-ascent

method after 70 evaluations, but it has the widest color

band of the three methods, indicating that it has the highest

uncertainty. FMQA explores the loss below 0.407 around

the 5th observation. Within a total of 70 evaluations,

FMQA searches for a minimum loss value of 0.289, the

best performance among the three methods. This section

addressed the first problem in this study: hyperparameter

optimization of the metamodel. In HPO, BO and FMQA

exhibit insignificant strength compared to the exhaustive

search method (RS), which can be attributed to the two-

dimensional hyperparameter space. In the next subsection,

the performances of FMQA, BO and RS are compared for

a 4D MBSO problem using the created GPR metamodel

with optimized hyperparameters.

(2) Metamodel-based simulation optimization

In this subsection, another FMQA is applied to the meta-

model to search for the maximum 90% run-out distance

4
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in the space of physical input parameters (FABE, FABS,

COR, SC) for optimal risk assessment.

As an example of MBSO here, we consider the problem

of applying FMQA to the metamodel to find the physical

input parameters (FABE, FABS, COR, SC) corresponding

to the maximum 90% runout distance.

In accordance with Xiao et al. [2], the key parameters

in determining run-out distance were FABS and COR. For

visualization, Fig. 7 displays the GPR metamodel as a 3D

response surface in contour format. Here, the horizontal

and vertical axes are FABS and COR, respectively, and

the color indicates the magnitude of the 90% run-out dis-

tance. As seen from the figure, the optimum solution for

this MBSO example is intuitive to explore, but it is suffi-

cient for verifying the performance of FMQA.
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Fig. 7 Response surface of the 90% run-out distance

with key physical input parameters (FABS,

COR).

For MBSO using FMQA, BO and RS separately, 10 op-

timization trials are performed independently with differ-

ent initial data arrangements. In a single FMQA optimiza-

tion trial, 100 evaluations are performed with 10 initial

data points and 90 subsequent iterative evaluations. Fig.

8 illustrates the FMQA search process for a representative

result of the FMQA. The optimization results converge to

the brown point in the red box. This point corresponds to

(FABE, FABS, COR, SC) = (0, 1, 1, 0.872) in the physi-

cal parameter space, corresponding to a global maximum

of 1.3681 m. As seen from Fig. 8, the local maximum

(FABS, COR) = (0,1) was evaluated in the physical pa-

rameter space at a certain iterative step, but the global min-

imum was eventually selected. To further confirm the per-

formance of FMQA, Fig. 9 compares the optimization his-

tory with those of BO and RS. On this particular MBSO

problem, FMQA performed almost the same as BO. In-

deed, these two performances are approximately 18% bet-

ter than those of RS. FMQA’s best performance over 10

independent runs was slightly better than BO’s, but BO

converged faster and more consistently.

(3) Discussion

To obtain a globally optimum solution to a black-box

function, global optimization algorithms generally need

(a) Training phase (b) 10th iteration

(c) 40th iteration (d) 90th iteration
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Fig. 8 FMQA search process in MBSO.

Fig. 9 Evaluation histories of FMQA for MBSO.

to balance exploration and exploitation, which is called

the ‘exploration-exploitation trade-off’. This trade-off is

achieved through the two respective acquisition functions:

the commonly used upper confidence bound (UCB) for BO

and the FM model function, which is updated with each

evaluation, for FMQA. In general, the focus on exploration

helps the optimization method escape local optimum solu-

tions and explore the entire parameter space in search of

the global optimum solution.

In the HPO and MBSO problems in this study, the local

optimum solutions were in the range (σ2
f , λ) = (10−1, 1)

and (FABS, COR) = (0, 1), respectively. As seen in

Figs. 5 and 8, FMQA explores the locations of uncertainty

throughout the optimization process and eventually con-

verges to the global optimum. These results are a good il-

lustration of the exploration-exploitation trade-off and the

strength of FMQA. Although it is not the main objective

to judge the superiority of methods, it is meaningful to ex-

5
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plore the possibilities of FMQA by comparing it with other

methods, and we will continue to study its applicability to

the field of landslide risk assessment.

4. Conclusion

This study examined the applicability of FMQA for

two optimization problems, hyperparameter optimization

(HPO) for metamodeling and metamodel-based simulation

optimization (MBSO) targeting granular flow simulation

using DEM.

Daring to choose simple HPO and MBSO problems as

examples for comparative studies, the results showed that

FMQA using an Ising machine was equivalent to Bayesian

optimization (BO), a state-of-the-art optimization algo-

rithm, and was applicable to the field of landslide risk as-

sessment. As quantum computers are expected to be expo-

nentially faster than classical computers, the value of this

study is that it provides a basis for direct application of

QA to high-dimensional complex HPO and MBSO in the

future as hardware is developed.
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