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SSVEP refers to the electroencephalography (EEG) induced in the visual cortex of the brain by steady-
state visual stimuli. While displays are mainly used as visual stimulus presentation devices, continuous 
viewing of the display is necessary to induce SSVEP, which can be inconvenient for daily life. This issue 
could be addressed by using smart glasses. In this study, we examined devices using displays, smart 
glasses (with transparent background), and smart glasses (with black background) to facilitate SSVEP 
responses. 
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1． はじめに 
近年，脳波信号によって機械を動かすことが可能にす

る様々な BMI (Brain Machine Interface) が提案されている．

BMI とは，脳波等の脳活動を計測・解析し，機械で扱え

る形に変換することで，脳と機械を接続する技術である．

これによって，身体に不自由のある人々が自らの意思で

機械を制御することが可能となる． 
BMI に活用するための脳波がこれまでにいくつか提案

されており，例としては SSVEP (Steady State Visual Evoked 
Potential)，MI (Motor Imagery)，P300 などが挙げられる． 
本研究では，SSVEP に着目する．SSVEP は定常的な刺

激により脳の視覚野で誘発される脳波 (EEG) であり，視

覚が一定の周波数により刺激されるときに生じる．例え

ば，15Hz の視覚刺激を呈示した場合，それに同調して

15Hz 成分の脳波が増幅される．SSVEP は特徴量抽出が容

易であり，短い試行時間でも分類が可能なため遅延が小

さく，慣れや訓練があまり必要でないことがメリットと

して挙げられる．一般的な視覚刺激呈示装置として主に

ディスプレイが挙げられるが，SSVEP を誘発するにはデ

ィスプレイを視認し続ける必要があり，日常生活に不便

が生ずる．上記の問題はスマートグラスにより解決され

る．本研究ではディスプレイ，スマートグラス(透過背景)，
スマートグラス(黒背景) を用いて SSVEP の反応が出や

すい装置の検討を行った． 

2． 原理と方法 
a) SSVEP 
SSVEPは，特定の視覚的刺激に対する脳の反応を示す

一種の脳波である．これをBMIとして活用するためには，

まず異なる周波数で点滅する刺激を準備し，それぞれに

個別の命令を割り当てる．利用者が意図する命令を行う

ために，利用者は割り当てられた刺激に注視する．その際，

脳波を解析して利用者の意図を分類することが可能とな

る．しかし，脳波は微弱な信号であり，測定時に外部およ

び内部のノイズの影響を受けるため，正確な測定が困難

である． 
通常，SSVEPを誘発するためには，被験者にディスプレ

イで刺激を提示する．しかしこの方法では，利用者はディ

スプレイを注視する必要があり，実用性に欠ける．そのた

め，本研究ではスマートグラスを利用することを検討し

た．スマートグラスは，実際の視覚情報に情報を重ねて表

示することができる（拡張現実と呼ばれる），ヘッドマウ

ント方式のウェアラブルデバイスである．ディスプレイ

を注視する必要がないため，利用者はよりリラックスし

た姿勢で脳波を測定できる．そのため，実用性が向上し，

脳波の測定精度も向上すると考えられる． 
また，一般的にはフラッシュ刺激が使用されるが，本研

究ではチェッカーボードの白黒を反転させるリバーサル

パターンによる刺激提示方法を採用した．この方法は，フ

ラッシュ刺激よりも弱いパワーでSSVEPを発生させるこ

とができると言われている． 

 
b) 脳波測定 
脳波を測定する方法には，侵襲式，低侵襲式，非侵襲式

がある．本研究では非侵襲式で脳波測定を行う． 
 非侵襲式には様々な種類があるが，中でも頭皮上に電

極を配置して脳内の電流を測る脳波測定と呼ばれる手法 
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図-1 電極配置図 

 
 
が主流となっている．他の方法と比べると取り付けは非

常に容易で安全性も高い反面，頭蓋骨などを通して脳波

の測定を行うため，ノイズ成分が多くなりやすい． 
本研究の測定機器は，Gtec社の Unicorn Hybrid Black，

スマートグラスは MOVERIO BT-40 を使用した． 
目から与えられた視覚刺激は視神経を通り，後頭葉に

ある一次視覚野へ電気刺激として送られる．そこから色，

形，動きなどの要素に分けられ，情報を処理する場所に運

ばれる．このように後頭葉を中心にして視覚情報の処理

が行われている． 
そこで電極は図 1 の示す通り，Oz，Cz の 2 つのチャン

ネルに配置し，Oz と Cz それぞれで計測された脳波の差

分信号 Oz-Cz のデータを取得する． 
 

c) 深層学習モデル 
本研究では脳波分類のために，コンパクトな深層学習

モデルである EEGNet を使用した [1]．EEGNet は，主に

畳み込みニューラルネットワーク（CNN）アーキテクチ

ャをベースにしており，脳波信号の分類や解析などのタ

スクに適している． 
EEGNet は BCI において睡眠ステージの分類，てんかん

検出などの応用に広く使用されている． 
 
d) 実験方法 
被験者は 10 人の男女で，年齢は 22〜23 歳の健常者で

ある．全ての被験者は既知の知的障害や他の重要な健康

上の問題を持っていない． 
まず第一に，脳波の計測方法を以下の図 2 に示す．5×5

のチェッカーボードを 4 つ，それぞれ 7.5，10，12，15 [Hz]
の周波数でディスプレイの 4 つ角にて点滅させる． 

 
図-2 チェッカーボード 

 

 
図-3 時間-周波数領域変換 (フーリエ変換) 

 
続いて，被験者に脳波計ならびにスマートグラスを着

用させ，4 つのチェッカーボードを１つあたり 30秒ずつ

注視してもらい，その時の脳波を取得する．そして，ディ

スプレイ，スマートグラス (透過背景)，スマートグラス 
(黒背景) を装着した場合の 3 パターンをそれぞれ計測す

る．この時，計測の正確性を確認するため，図 3 のよう

に，取得脳波に離散フーリエ変換を施し，時間領域のデー

タを周波数領域のデータに変換し，グラフ化の上，視認に

て実験者が確認する． 
最後に，取得した脳波ををそれぞれ EEGNet にて 100エ
ポック分学習させ，テストデータを用いて分類精度を算

出する． 

3． 実験結果 
実験結果を図 4，図 5 と表 1 に示す．ディスプレイとス

マートグラス (透過背景) とを比較して，10 人のうち 3 人

がディスプレイの時，5 人がスマートグラス (透過背景) 
で分類精度が高かった．スマートグラス (透過背景) とス

マートグラス (黒背景) の比較では，10 人のうち 5 人が

スマートグラス (透過背景)，残り 5 人がスマートグラス 
(黒背景) で分類精度が高かった．ディスプレイとスマー

トグラス (黒背景) との比較では，10 人のうち 2 人がデ

ィスプレイの時，残り 8 人がスマートグラス (黒背景) に
て分類精度が高かった．ディスプレイとスマートグラス

(透過背景) との比較では，10 人中 10 人でディスプレイ

よりスマートグラスで分類精度が高かった． 
 

 

表-1 被験者毎の分類精度 

 

被験者A 被験者B 被験者C 被験者D 被験者E 被験者F 被験者G 被験者H 被験者I 被験者J

display 0.825 0.947 0.871 0.894 0.871 0.833 0.878 0.841 0.841 0.902

glass 0.984 0.962 0.848 0.894 0.969 0.833 0.712 0.818 0.939 0.992

blackglass 0.977 0.932 0.893 0.902 0.879 0.765 0.924 0.866 0.916 1.000
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図-4 被験者の精度（折れ線グラフ） 

 

 
図-5 被験者の精度 

 

4． 結論 
ディスプレイよりもスマートグラスを用いて取得した

SSVEPの方が深層学習において高い分類精度を示した．

被験者10人における分類精度の平均値は，ディスプレイ

で0.8703，スマートグラス (透過背景) で0.8951，スマー

トグラス (黒背景) で0.9054であった．以上より，10人の

平均分類精度はスマートグラス (黒背景) で最も高い値

が得られた．しかし，スマートグラス (透過背景) とスマ

ートグラス (黒背景) で得られた分類精度の差は非常に

小さいため，より詳細な解析にはさらに多くの被験者で

取得したデータが必要である． 
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