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Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that is well suited for splitting 

and coalescing of fluids, but it still has fatal errors that degrade due to particle turbulence during simulation. 

Therefore, a higher order spatial derivative formulation of SPH that satisfies the second -order accuracy 

of the Taylor expansion has been developed by our research group. Free-surface flows, in which the 

particle array is easily disrupted by violent water surface changes and particles within the radius of 

influence are inevitably lost near the water surface, were expected to be an example of application of a 

highly accurate model, but numerical instability remains a problem. In this study, we reviewed the entire 

calculation scheme of the particle method except for the derivative operator and proposed an improved 

treatment that includes free surface determination. Then, the proposed method is demonstrated through 

rotating square and dam failure analyses to show the accuracy and robustness. Finally, Finally, the solitary 

wave analysis shows the usefulness of the model in conserving energy, even with high accuracy. 
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1． 緒言 

Lagrange記述に基づく粒子法の一つであるSPH法は，計

算過程において連続体の変形に併せて粒子を動かし，粒

子分布が非均一となるため計算精度が低下しやすい．そ

こで，著者らのグループでは粒子分布の乱れが生じても

Taylor展開の2次の項までを満たす高精度な2階微分モデ

ル1)（以下，SPH(2)と略記）を提案してきた．特に，自由

表面流れ問題では，激しい形状変化により粒子配置が乱

れやすく，また表面付近においては影響半径内の粒子が

必然的に欠損するため，SPH(2)のよい適用例として期待

していたが，SPH(2)のみでは自由表面付近で計算が不安

定になるという問題が残されていた．そこで本研究では，

SPH(2)による自由表面流れ解析の計算安定化を目的とし，

自由表面判定を含む微分演算子以外の計算スキーム等を

全体的に見直したI-SPH(2)を提案する．さらに，提案した

I-SPH(2)について正方流体回転解析によって検証し，水柱

崩壊解析によって妥当性確認を行った．最後に孤立波解

析によって従来モデルに対するI-SPH(2)の優位性を示し

た． 

2． SPH(2)（高精度微分モデル） 

SPH(2)は，これまでにSPH法の枠組みで提案されてきた

高精度微分モデルを修正改良した勾配モデルと，空間の2

階微分項に対する高精度モデルから構成される．両者と

もに，理論的には空間2次精度を満たすモデルである．た

だし，現実的には粒子配置の乱れにより，収束性を悪化さ

せる傾向が避けられず，運用上は粒子再配置法2)と併用化

することが望ましい．以下にSPH(2)の内容である，2次精

度の勾配モデルおよび，空間2階微分モデルを整理して示

す．  

(1) 勾配補正モデルとSPH(2)の勾配モデルの比較 

勾配補正モデルは，SPH近似により離散化した状態で

Taylor展開することで，次式のように導出できる． 

〈∇𝜙〉𝑖 ≔ 𝑳𝑖
−1 ⋃𝑉𝑗(𝜙𝑖𝑗 − 𝑅)∇𝑤𝑖𝑗

𝑗∈𝕊𝑖

 

≅ ⋃𝑉𝑗𝜙𝑖𝑗𝑳𝑖
−1∇𝑤𝑖𝑗

𝑗∈𝕊𝑖

=:⋃𝑉𝑗𝜙𝑖𝑗∇̃𝑤𝑖𝑗

𝑗∈𝕊𝑖

 

𝑳𝑖 = ⋃𝑉𝑗(∇𝑤𝑖𝑗⨂ 𝒓𝑖𝑗)

𝑗∈𝕊𝑖

 

 

(1) 

(2) 

𝑉𝑗は j 粒子の代表体積，𝜙𝑖は i 粒子の物理量(𝜙𝑖𝑗 ≔ 𝜙𝑗 −

𝜙𝑖)，𝑤𝑖𝑗は j 粒子の i 粒子に対する重み，𝒓𝑖は i 粒子の位

置ベクトル(𝒓𝑖𝑗 ≔ 𝒓𝑗 − 𝒓𝑖)を示す．R は Taylor 展開の剰余

項であり，ここでは 2 次以上の高次項となる．式(1)は， 

2 次以上の項を無視した 1 次精度の勾配補正モデルであ

る．R に次節の式(3)で与える空間 2 階微分項をまでを考

慮した勾配補正モデルが，SPH(2)の勾配モデルである． 

(2) SPH(2)による空間2階微分 

2 次元問題における高精度 2 階微分モデルは，次式に

示す 3×3 の行列を各 2 階微分項に対して数値的に解くこ

とで評価できる． 
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⋃𝑉𝑗
𝑗∈𝕊𝑖

𝐹𝑖𝑗𝒒𝑖𝑗𝒑𝑖𝑗
𝑇 [

𝜕2𝜙𝑖

𝜕𝑥2
  
𝜕2𝜙𝑖

𝜕𝑦2
  2

𝜕2𝜙𝑖

𝜕𝑥𝜕𝑦
]

𝑇

 

 

= 2⋃𝑉𝑗𝐹𝑖𝑗𝒒𝑖𝑗 (𝜙𝑖𝑗 − 𝒓𝑖𝑗 ⋅ ⋃ 𝑉𝑘
𝑘∈𝕊𝑖

𝜙𝑖𝑘∇̃𝑤𝑖𝑘)

𝑗∈𝕊𝑖

 
(3) 

ここで，𝐹𝑖𝑗 , 𝒒𝑖𝑗 , 𝒑𝑖𝑗は次の式で定義される． 

𝐹𝑖𝑗 ≔ 𝒓𝑖𝑗 ∙ ∇̃𝑤𝑖𝑗/|𝒓𝑖𝑗|
4
 (4) 

𝒒𝑖𝑗 ≔ [𝑥𝑖𝑗
2 𝑦𝑖𝑗

2 𝑥𝑖𝑗𝑦𝑖𝑗]
𝑇
 (5) 

𝒑𝑖𝑗 ≔ [𝐴(𝑥, 𝑥) 𝐴(𝑦, 𝑦) 𝐴(𝑥, 𝑦)]𝑇 (6) 

𝐴(𝑎, 𝑏) ≔ 𝑎𝑖𝑗𝑏𝑖𝑗 − 𝒓𝑖𝑗 ∙ ⋃ 𝑉𝑘𝑎𝑖𝑘𝑏𝑖𝑘∇̃𝑤𝑖𝑘

𝑘∈𝕊𝑖

 (7) 

3． SPH(2)による自由表面流れ解析に向けた改良 

SPH法の計算スキームでは，境界条件として自由表面で

𝑝 = 0 [Pa]を与えるため，表面の特定は高い精度で行わな

ければならない．SPH(2)では，特に自由表面判定の誤判定

に敏感に反応し，圧力ポアソン方程式によって非物理的

な圧力が求解されることで計算不安定性を引き起こして

いた．そこで本研究では，固有値による自由表面判定3)に

改良を施したI-SPH(2)を提案する． 

(1) 自由表面判定の改良 

式(2)で示される勾配補正行列𝑳𝑖は，2次元化において

2 × 2の行列となり，粒子配置が乱れた際に補正を与える．

従って，粒子分布が図-1(a)のように乱れがないとき，𝑳𝑖

は単位行列となる．このような特性から，𝑳𝑖の行列式は，

粒子分布に乱れがない際に1.0に近づき，図-1(b)のような

粒子分布の乱れや粒子欠損が顕著になると，その値は1.0

よりも小さくなる． 

 

  

(a)乱れなし (b)乱れあり 

図-1 粒子分布図 

 

既往の手法において，自由表面付近で判定漏れが生じる

粒子の 𝑳𝑖の行列式が0.6以下であることから，行列式が0.6

以下となる際に，自由表面とするという条件を既往の手

法に追加した． 

(2) 自由表面付近における勾配補正の取り扱い 

自由表面付近で計算が不安定になる要因として，自由

表面判定以外に，粒子欠損の見られる表面付近で勾配補

正を行っていたことが挙げられる．勾配補正は粒子欠損

がある際に，その欠損分を補う働きをするため，図-2(a)

に示すように自由表面付近において空気中に勾配を保持

するような水粒子がある状態を仮定するといえる．従っ

て，𝐿𝑖の行列式が0.8以下となるような，自由表面付近の

速度の発散において勾配補正を用いない次の式(8)を用い

ることで，図-2(b)に示すように空気粒子を考慮して評価

する．その際に，空気粒子は，水と同様の対象粒子と同様

の速度で移動しているという仮定をしている． 

 

 

(a)勾配補正あり 

 

(b)勾配補正なし 

図-2 勾配補正と標準的な勾配のイメージ図 

4． 正方流体回転解析 

(1) 概要 

I-SPH(2)の計算安定性と精度を検証するために，検証例

題の1つである正方流体回転解析を行った．解析モデルは，

1辺が100cmの正方形領域の無重力・無粘性流体であり，

初期条件として正方形領域の図心を中心に角速度

1.0rad/secを与えた．この例題において，正方流体の外縁が

自由表面となっている．解析条件は粒子直径を0.5cm，時

間増分を1.0 × 10−4sとした．また，この例題にのみ以下の

式(9)で示すXSPH法4)を導入し，粒子の速度を平滑化する

ことで計算安定化を図った． 

𝑑𝒓𝑖
𝑑𝑡

= 𝒗𝒊 + 𝜖⋃2
𝑚𝑗

𝜌𝑖 + 𝜌𝑗
(𝒗𝑗 − 𝒗𝑖)𝑤𝑖𝑗

𝑗∈𝕊𝑖

 
(9) 

式(9)における𝜖は，平滑化の程度を規定する定数で，経験

的に決定する必要がある．本解析では，𝜖 = 0.05とした．  

(2) 解析結果 

解析結果を図-3に示す．図-3(a)の改良なしでは，自由

表面の判定漏れから計算不安定性が引き起こされ，図示

した時刻𝑡 = 1.32sの次の時間ステップで計算が破綻した．

一方，図-3(b)の改良ありでは，自由表面の漏れが減少し

たことで計算安定性を得て，長時間の解析を行えた．これ

らの結果から，自由表面の改良により正確な境界条件を

与えることで，計算安定性が向上したと考える． 

空 粒子

  粒子

 粒子

空 粒子

  粒子

 粒子

〈∇ ∙  𝒗〉𝑖 ≔ ⋃𝑉𝑗𝒗𝑖𝑗 ∙ ∇𝑤𝑖𝑗

𝑗∈𝕊𝑖

 (8) 
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図-3 解析結果の比較 

5．  柱崩壊解析 

(1) 概要 

I-SPH(2)の妥当性確認のために，水と同様の粘性・一般

的な重力下における水柱崩壊解析を行った．解析モデル

は，100cm × 300cmの水槽と40cm × 40 cmの水柱からな

り，粒子直径は0.5cm，時間増分は5.0 × 10−4secとした．

また，I-SPH(2)の比較のために，高精度な微分モデルのみ

を用いた解析も行った． 

(2) 解析結果 

解析結果を図-4に示す．図-4(b)に示されるSPH(2)モデ

ルのみを導入した場合，自由表面の誤判定によって非物

理的な圧力が評価され，表面付近で計算が不安定になり，

計算が破綻した．一方で，図-4(a)に示されるI-SPH(2)に

よる解析では，提案した改良法によって波が発生して粒

子同士が激しく衝突するような場合においても，高精度

微分モデルによる表面付近の計算不安定性を解消し，長

時間かつ高精度な解析を実現した． 

6． 孤立波解析 

(1) 概要 

I-SPH(2)の有用性を示すために孤立波解析を行った．解

析モデルは，1400cm × 20cmの水路と造波板からなる．粒

子直径を0.5cm，時間増分を1.0 × 10−4sとした．造波板を

Goring 5)の提案式に基づき駆動させて孤立波を生成し，速

度分布と水面位置の時間遷移を計測した．また，ここでは

本研究で提案したI-SPH(2)と数値安定性に優れる和モデ

ルを用いた従来型のISPHの比較を行う．I-SPH(2)と従来型

のISPHでは，圧力勾配の式が異なる．式(10)，式(11)にI-

SPH(2)と従来モデルの圧力勾配の式を示す． 

I-SPH(2) 
〈∇𝑝〉𝑖 = ⋃

𝑚𝑗

𝜌𝑗
(𝑝𝑗 − 𝑝𝑖)∇̃𝑤𝑖𝑗

𝑗∈𝕊𝑖

 
(10) 

従来型 

〈∇𝑝〉𝑖 = 𝜌𝑖 ⋃𝑚𝑗 (
𝑝𝑖

𝜌𝑖
2 +

𝑝𝑗

𝜌𝑗
2)∇𝑤𝑖𝑗

𝑗∈𝕊𝑖

 

= 𝜌𝑖 ⋃𝑚𝑗 (
𝑝𝑗

𝜌𝑗
2 −

𝑝𝑖

𝜌𝑖
2)∇𝑤𝑖𝑗

𝑗∈𝕊𝑖

 

+2⋃
𝑚𝑗

𝜌𝑖
𝑝𝑖∇𝑤𝑖𝑗

𝑗∈𝕊𝑖

 

(11) 

 

(12) 

(2) 解析結果 

速度分布図を図-5に示す．従来モデルでは，速度が減衰

しながら波が進行するのに対して，I-SPH(2)では速度の減

衰が少ないことが示されている．また，孤立波による水面

位置の変化を示した図-6では，従来モデルでは，孤立波の

波高の減衰が見られるのに対して，I-SPH(2)では波高が保

持されていることを定量的に確認した．これらから，I-

SPH(2)は従来モデルよりもエネルギー保存性に優れたモ

デルであることが示された．この結果は，従来モデルが密

度変化を考慮して人工的な安定化項（式(12)の第2項）を

導入しているのに対して，I-SPH(2)では，人工的な項を排

除したモデルであることに起因すると考える． 

 

 

(a) 改良あり 

 

(b) 改良なし 

図-4 各時間ステップにおける 柱崩壊挙動 

          

 = 1.32s

 = 1.3 s

 = 1.32s

 = 1.3 s

  1   5 

   Pa 

   Pa  

 1   25  5  2   15  

25  

(a) 改良なし 

(b) 改良あり 
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(a)I-SPH(2) (b)従来モデル 

図-5 各時間ステップの流速分布の比較 

 

 

(a) I-SPH(2)  (b)従来モデル 

図-6 孤立波による各地点の 面位置の変化 

7． 結言 

本研究では，空間 2 次精度を有する微分モデルである

SPH(2)を自由表面流体解析に適用するために，I-SPH(2)を

提案した．SPH(2)のみを導入した際には，自由表面の誤判

定に伴う圧力振動が計算不安定性の要因であることを究

明し，I-SPH(2)では自由表面判定の改良と表面付近で勾配

補正を行わないことによって計算不安定性を解消するこ

とを試みた．I-SPH(2)の検証・妥当性確認として，正方流

体回転解析・水柱崩壊解析を行い提案手法によって計算

不安定性を解消し，高精度かつロバストな解析が実行で

きることを示した．さらに，孤立波解析では，従来法との

比較によって I-SPH(2)がエネルギー保存性について優位

であることを示した．今後は，波の斜面遡上において見ら

れる，ソリトン分裂による波の分散性を I-SPH(2)によっ

て再現することで，高精度な解析が可能であることを示

す． 
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