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Correction in the gradient and Laplacian operators have the potential to drastically increase the ac-
curacy of the Smoothed Particle Hydrodynamics (SPH) at the expense of computational stability.
This paper proposes a stable implementation of such corrections in all derivative operators to the
Arbitrary Lagrangian Eulerian incompressible SPH (ALE-ISPH) method. To solve the problem
of instability, we have developed a novel density-based particle shifting technique (PST) that uses
the numerical density as a critical constraint variable to maintain the fluid’s overall volume for the
whole simulation. In addition, we propose a novel Neumann boundary condition (BC) applied
directly on the velocity, which increases the accuracy even further. The method has been verified
and validated, and, at last, we show an application of the method for surface tension problems.
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1. INTRODUCTION
Since its conception, the Smoothed Particle Hydrody-

namics (SPH; [1,2]) have been greatly improved over the
years in terms of numerical accuracy. Highlighting this im-
provements we have the correction of kernel gradient [3,4]
and Laplacian operator [5].

The use of such corrections in purely Lagrangian de-
scription of SPH causes particles to move along stream-
lines, which leads to particle clustering, an intrinsic prob-
lem of particle methods. This results in anisotropic particle
configurations within the compact support, which degrade
the accuracy of the kernel interpolation of the SPH method.
Particle Shifting Techniques (PST), firstly proposed by [6],
prevent anisotropic particle configuration by slightly shift-
ing the particle position and realigning the particles regard-
less of the Lagrange velocity. It is an effective method to
solve the problem of particle clustering. Examples of par-
ticle shifting techniques can be found on [7,8,9].

However, current PSTs do not shift if the particle config-
uration in the compact support is nearly isotropic. There-
fore, even if the particle configuration becomes increas-
ingly sparse, it will not be shifted if the configuration is
considered isotropic, resulting in a gradual expansion of
the overall volume. In our opinion, the discussion of vol-
ume conservation by PST is not well discussed. In this
paper, we propose a new PST specifically designed to im-
pose volume conservation on incompressible fluids. Given
that we use the numerical density of the particle to evaluate
volume conservation, we call this technique Density-based
Particle Shifting.

Another contribution of this paper is related to boundary
conditions (BC). A widely used method of wall boundary
conditions for particle simulations is the Fixed Wall Ghost

Particles (FWGPs) (e.g. [10,11]). This method satisfies the
wall BCs by placing ghost particles inside the wall bound-
ary and applying the desired BC on them, usually treating
the wall particles as an extension of the fluid (i.e., inter-
polating pressure and velocity over the wall particles). As
a result, it is usually necessary to include several layers
of wall particles to satisfy the unity condition. Here, we
propose a novel Neumann boundary condition on the wall
particles that perfectly satisfy the non-penetration BC in a
single layer wall particles, applying it directly on the ve-
locity.

2. ISPH PROJECTION IN ALE DESCRIPTION
Let us start with the Navier–Stokes and continuity equa-

tions for incompressible fluid in the ALE description

∂v
∂t

+ c · ∇v = − 1

ρ0
∇p+ ν∇2v + g, (1)

∇ · v = 0. (2)

In ALE description, the material point (particle) moves
according to an arbitrary reference velocity called transport
velocity, here represented by w. In the above equations, v
is the Lagrangian fluid velocity, c is the relative velocity
c = v − w, p is the fluid pressure, ν is the kinematic vis-
cosity, g is the gravity acceleration and ρ0 is the reference
fluid density.

Following the traditional projection method [12,13,14],
Eq. 1 is split into a predictor step

v∗ = vn + ∆t
(
ν∇2vn + g− cn · ∇vn

)
(3)

and a corrector step
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vn+1 = v∗ −∆t
( 1

ρ0
∇pn+1

)
, (4)

where superscripts n, ∗ and n + 1 represent the current,
predictor and next steps, respectively.

To obtain the pressure Poisson equation, one must mul-
tiply both sides of the corrector step (Eq. 4) by ∇ and,
considering the incompressible condition (Eq. 2) for n+ 1
step, we may find, after rearranging,

∇2pn+1 =
ρ0

∆t
∇ · v∗. (5)

Finally, one must calculate the transport velocity wn+1

and update the particle position as

xn+1 = xn + ∆twn+1. (6)

Probably the most important advantage of ALE formu-
lation is its versatility in terms of adapting to different sit-
uations. For instance, one may chose the transport velocity
w equals to the Lagrangian velocity v and retrieve back
the Lagrangian formulation. Another option is, for steady
flows, for example, chose w = 0, so it becomes an Eule-
rian formulation. In a more gereral case, following [15],
the transport velocity is calculated as

wn+1 = vn+1 +
1

∆t
δrshift, (7)

where δrshift is a small shifting of the particle position
with the objective of leading to a better particle distribu-
tion (|δrshift/∆t| << |v|).

3. SPH OPERATORS
Here, we summarize the SPH operators used in this

study. All formulas are derived from the the original SPH
approximations [1,2] for an arbitrary function f

〈f〉i =

N∑
j

mj

ρj
fjW (rij , h), (8)

where, m represents the mass, W is the SPH weight func-
tion, r is the relative position, h is the smoothing length
(in our code, h = 1.2d, d being the particle diameter), N
is the total number of particles, 〈〉 represents the SPH ap-
proximation and the subscripts i and j represent target and
neighboring particle, respectively. To simplify the nota-
tion, we abbreviate W (rij , h) as Wij and ∇W (rij , h) as
∇Wij .

In this study, the correction of kernel gradient [3,4] is
calculated as

〈∇f〉i =

N∑
j

mj

ρj
(fj − fi)Li∇Wij , (9)

where

Li =
(∑

j

mj

ρj
∇Wij ⊗ rji

)−1

. (10)

We use the Laplacian operator derived from [5], which,
after some rearranging of the original equation, can be cac-
ulated as

〈∇2f〉i =

N∑
j

A∗ij(fi − fj), (11)

where

A∗ij = Aij +
( N∑

j

Aijrij
)
· mj

ρj
∇̃Wij , (12)

Aij = Bi :
2mj

ρj

rij∇Wij

r2
ij

. (13)

and

Bi :
[ N∑

j

mj

ρj
rijeijeij∇Wij +

( N∑
j

mj

ρj
eijeij∇Wij

)
·

Li ·
( N∑

j

mj

ρj
rijrij∇Wij

)]
= −I. (14)

Here, eij = rij/|rij |. For more details on the formulations
and the rearranging of the Laplacian operator, please refer
to [16].

4. BOUNDARY CONDITIONS
For the wall, we use fixed wall ghost particles (FWGPs)

to represent the wall surface. In this method, the wall is
represented by a single layer wall ghost particles located
behind the wall surface. Hence, to describe each particle,
it is necessary to provide its location and normal direction
n of the wall surface that it represents.

(1) Slip/non-slip boundary conditions
First, we show the application of boundary conditions

for the predictor step, that is, considering either slip or non-
slip condition. Let us start with the viscous term of the
Navier–Stokes equations already discretized with the SPH
approximation:

〈ν∇2v〉i =

N∑
j

νi + νj
2

A∗ij(vi − vj). (15)

Then, enforcing the slip/non-slip condition is equivalent
to find the value of vj (for j ∈ wall) that satisfies this
condition. Here, we solve this problem with two simple
rules:

• For non-slip condition: vj = vwall;
• For slip condition: vj = vi.

(2) Novel Neumann boundary condition
We developed a novel Neumann boundary condition in

which the non-penetration condition is enforced directly
on the pressure value of wall particles. Let us multiply the
corrector step (Eq. 4) on both sides by the unity normal
direction vector of a wall surface n
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vn+1 · n =
[
v∗ −∆t

( 1

ρ0
∇pn+1

)]
· n. (16)

The imposition of the non-penetration condition re-
quires to solve Eq. 16 substituting vn+1 by the real wall
velocity vwall. Notice that the target particle of this equa-
tion is a wall particle. After rearranging the pressure to
the left-hand side and applying the non-penetration BC, we
find

∇pn+1 · n =
ρ0

∆t
(v∗ − vwall) · n. (17)

(3) PPE including boundary conditions
Succinctly, pressure calculation including free-surface

(FS) and non-penetration boundary conditions can be sum-
marized as the following equations:

pn+1
i = 0, if i ∈ FS
∇pn+1

i · ni = ρ0
∆tv
∗
i · ni, if i ∈ wall

∇2pn+1
i = ρ0

∆t∇ · v
∗
i , if i ∈ fluid

(18)

Applying the SPH operators for the gradient (Eq. 9)
and Laplacian (Eq. 11) of pn+1

i , respectively, we derive a
system of linear equations with asymmetrical coefficients,
given that the equations used for target wall and fluid par-
ticles are different. In this study, we use the well-known
Biconjugate Gradient Stabilized (BICCGSTAB) method to
solve it.

5. DENSITY-BASED SHIFTING TECHNIQUE
We developed a novel particle shifting technique (PST)

that can reliably be applied in the context of incompress-
ible fluids. The objective of the proposed PST is to address
three existing problems: lead to an evenly distributed par-
ticle continuum (a), avoid particle clumping (b), and main-
tain overall numerical density (c).

In SPH, the numerical density is usually calculated with
Eq. 8 directly. However, since we are using only one layer
of wall particles, this equation would lead to lower num-
ber densities near the wall surface. To compensate that,
we propose using Eq. 8 applied to a small influence radius
d∗inf = (1.1

√
D)d, where D is the number of dimensions.

Let us call the domain of neighboring particles within the
small influence radius as S∗. Then, to compensate the
smaller influence radius, we multiply Eq. 8 by a fixed
parameter β, which leads to ρi = ρ0 for a grid particle
distribution. In Mathematical terms,

〈ρ〉i = β

N∑
j∈S∗

mjWij , (19)

where dist(i, j) is a function that returns the distance be-
tween points i and j. For the cubic spline with h = 1.2d,
in three-dimensions, β ≈ 1.028.

Then, our proposed shifting equation can be written as

δrshift,i = Cshifth
(
δrw,i + δrdens,i

)
, (20)

where

δrw,i =

{
δr∗w,i − (δr∗w,i · Ni)Ni, if i ∈ FS
δr∗w,i, otherwise

, (21)

δr∗w,i =

N∑
j∈S∗

(mj

ρj
Wij

)
eij , (22)

and

δrdens,i =

N∑
j∈S∗

( 〈ρ〉i
ρ0
− 1 +

〈ρ〉j
ρ0
− 1
)

eij . (23)

In Eq. 20, Cshift is a constant shifting parameter, the
δrw,i term aims to solve problems (a) and (b), while δrdens,i

was designed specifically to solve problem (c). Here, Ni is
calculated as [8]

Ni =
N∗i
|N∗i |

, (24)

N∗i =

N∑
j

mj

ρj
(λj − λi)∇̃Wij , (25)

where λi is the minimum eigenvalue of L−1
i .

6. NUMERICAL EXAMPLES
(1) Verification: Poisenuille Flow

This example is to test the proposed method wall bound-
ary conditions. The pipe model is illustrated in Fig.1(a),
with dimensions L = 0.002 m and wall particles posi-
tioned at r (radial distance from the center) equals R =
0.0005 m. We have selected the Eulerian framework for
this problem. In this way, the inlet/outlet conditions are re-
duced to fixed Dirichlet pressure conditions (here we chose
∆p = 1 Pa).

All particles are initiated with null pressure and velocity.
We simulate this problem with three particle sizes: d =
6.25×10−5, 5×10−5 and 2×10−5 m. Because of the novel
Neumann BC and [5]’s Laplacian correction applied to the
viscous term of the Navier–Stokes equation (Eq. 1), the
results for x velocity become basically indistinguishable
from the theoretical solution (as seen in Fig.2) for all three
cases.

(2) Validation: Rotating Square Patch
This example was first proposed by [17]. A 2D square

fluid is centered at the origin (0, 0) and an initial velocity
(ωy,−ωx) is applied to all particles without the presence
of gravity. Then, the fluid rotates and stretches in the di-
rection of its corners, which generates a negative pressure.
Here, we have chosen a square of size L = 1 m, particle
size of d = 0.02 m and angular velocity of ω = 1 s−1. The
objective of this example is to test the proposed density-
based PST under an unfavorable situation (negative pres-
sure). The shifting coefficient is set to Cshift = 0.005.

First, Fig.3 shows that the proposed corrected ISPH
method is not stable without the application of any PST.
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Fig. 1 Poisenuille flow: definition of geometrical vari-
ables(a) and snapshots at 0.5 s for pressure field
(b) and x velocity (c)
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Fig. 2 Poisenuille flow: graphical results at 0.5 s for dif-
ferent particle sizes comparing with the theoret-
ical solution

However, as observed in Fig.4, we demonstrate that the
proposed density-based PST is capable of solving this
problem in a very stable manner for an extended period
of time. Next, as illustrated in Fig.5, we conclude that
our proposed density-based PST is more suitable than [9]’s
OPS in terms of stabilizing the free-surface and maintain-
ing the numerical density. Lastly, the resulting pressure at
the center from our proposed corrected ISPH with density-
based PST is more stable than [15]’s, since it does not show
any relevant oscillatory behavior. Also, our results are al-
most indistinguishable from [18]’s reference pressure re-
sults at the center.

(3) Application: Surface Tension
The last numerical test is the application of the proposed

method to surface tension problems. Here we selected
a conventional macroscopic approach to surface tension,
which is calculated as

fST
i = −σκiδNi, (26)

where σ, κ, δ and N are surface tension coefficient, cur-
vature, coefficient of unit conversion and normal direction
vector, respectively. In general, curvature is calculated as
half of the divergence of normal direction. However, by

Pressure (Pa)
-50      -30 -5

ωt = 0.2 ωt = 0.7 After

Diverged

Fig. 3 Rotating square patch: resulting pressure field
with the proposed corrected SPH and without
any PST for different time steps

ωt = 4

Pressure (Pa)
-50      -30          -5

ωt = 0.2 ωt = 2

ωt = 1

Fig. 4 Rotating square patch: resulting pressure field
with the proposed corrected SPH and density-
based PST for different time steps

Density (kg/m3)

950    1000   1050

Density-based PSTOPS

Fig. 5 Rotating square patch: resulting numerical den-
sity field with the proposed corrected SPH us-
ing OPS [9] and proposed density-based PST for
ωt = 2

personal experience, we substituted this ”half” coefficient
by 0.41, leading to

κi = 0.41

NFS∑
j∈FS

mj

ρj
(Nj − Ni) · Li∇Wij , (27)

where FS refers to the domain of neighboring free-surface
particles. Notice that this force is only applied to free-
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Fig. 7 Cube with surface tension: snapshots of several
time steps (L = 0.002 m and d = 0.0001 m)

surface particles. δ is also chosen based on personal ex-
perience, and it is considered a fixed value of δ = 0.1/d.
Then, the surface tension force is included in the predic-
tor step as an external force. Also, the Dirichlet boundary
condition of free-surface particles changes as the surface
tension promotes a pressure value of 2σκi.

The first example consists of a cubic fluid with size L
under no gravity. σ is fixed as 0.007 N/m, and we con-
ducted several tests with several values of d and L. Fig.7
shows some screen shots of this simulation for 3D and cen-
tered cross-section views at different time steps. Notice
that both the curvature and pressure fields are reasonably
smooth. Next, on Fig.8, we plot 9 results with several val-
ues of d and L, showing that the solution agrees with the
Laplace pressure, which is given by 2σ/R, where R is the
radius of the sphere.

Lastly, we include the simulation of a cuboid droplet of
dimensions 2L × 2L × L (length, depth and height, re-
spectively) initially located on a ceiling. The droplet is
under the gravity acceleration of 5 m/s2, which is counter-
balanced only by the surface tension force. Also, we
include the concept of contact angle (θ) simply modify-
ing the normal direction vector N as shown in Fig.9. In
this way, the resulting surface tension from that enforced
contact angle automatically generates the correct forces.
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Fig. 8 Cube under surface tension: graphical results of
the average pressure over curvature comparing
with the theoretical Laplace pressure for various
values of L
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Fig. 9 Correction of the normal direction at the wall
interface to enforce the desired contact angle
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Fig. 10 Surface tension with contact angle: snapshots
of several time steps of the droplet formation
(L = 0.004 m and d = 0.0002 m)

Fig.10 shows the formation of the fluid droplet with two
different contact angles. We chose a higher value of σ =
0.07 N/m as to generate an almost stable situation when
θ = 60o. On the other hand, for θ = 120o, the surface
tension forces facilitate the fall of the droplet.
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7. CONCLUSION
This paper proposes a stable and accurate implementa-

tion of the SPH method using the gradient and Laplacian
corrections. Then, to increase the method’s accuracy and
stability, we propose a novel Neumann BC for the non-
penetration condition on pressure and an original density-
based PST.

As a result, our proposed corrected ISPH method is
capable of simulating boundary conditions accurately us-
ing only one layer of wall particles. Also, the proposed
density-based PST has been tested and proved to effec-
tively stabilize the method and maintain the numerical den-
sity of the fluid. For verification and validation, we have
conducted the Poisenuille and the rotating square patch
tests. Finally, we demonstrate that this numerical frame-
work is capable of simulating surface tension problems ac-
curately.
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