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In order to implementation tetrahedral elements to three-dimensional cracking problems using hybrid 

penalty method (HPM), which is capable of cracking analysis of concrete in two-dimensional analysis and 

its accuracy was verified. In addition, crack analysis is performed using a constitutive model that considers 

crack fracture energy, and its applicability is examined. . 
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1． はじめに 

コンクリート部材は早期のひび割れ進展状況が最終的

な破壊性状に影響を及ぼすことがあるため，ひび割れ破

壊エネルギーを考慮するとともに，ひび割れ解放力によ

りひび割れが進展する現象を精度よく追える解析手法が

必要となる． 

著者らはハイブリット型ペナルティ法（HPM）[1][2]に

ひび割れ破壊エネルギーと解放応力を考慮できる機能を

追加し，コンクリート部材の二次元問題に対する適用性

を示した[3][4]．コンクリート部材のひび割れ破壊は３次

元的な破壊面を示すものもあるため，同手法の３次元化

が必要である． 

本論文ではHPMに四面体要素を導入し，ひび割れ破壊

エネルギーと解放力を考慮できる３次元解析を可能とし，

その解析結果の検証と妥当性を確認し，コンクリート部

材解析への適用性の検討を行っている． 

2． 支配方程式とハイブリッド型仮想仕事の原理 

はじめにHPMの概略を示す．ハイブリッド型の仮想仕

事式は要素内応力と物体力による仕事と，要素境界面上

における変位の連続性に関する付帯条件による項から式

(1)のように表すことができる． 

 

(1) 

ここで， は図-1に示す部分領域 e を示しており，

は隣接する部分領域間の境界 ， は表面力が与えられる

境界を示している．上付きの は，部分領域 e に関する

量であり，下付きの は，隣接部分領域境界辺 に

関する量であることを示す． は境界  で囲

まれた部分領域 の数， は隣接要素の共通の境界

の数であり， は仮想変位， は

要素応力， は物体力， は境界  における

Lagrange の未定乗数， は表面力である． 

 

 
図-1 部分領域  と部分領域間の境界  

 

HPM は 図-2に示すように，式(2)で表される要素代表

点の変位と式(3)で表される要素内ひずみを自由度とし，

これらにより要素内変位場を式(4)のように定義する 

 

    (2) 

     (3) 

   (4a) 

ここに 
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  (4b) 

 

  (4c) 

， ，  

 

 

図-2 3次元HPMの自由度とペナルティ層（褐色部分） 

 

本解析では四面体要素を用い，要素内は一様ひずみと

した．この要素内変位を用いて要素境界に設定された十

分に剛なペナルティバネの相対変位を求め，要素境界力

を決定する手法である．式(5)にペナルティバネの相対変

位から要素境界力を求める式を示す．ここで，添え字 s, t, 

n は図-3 に示す座標系の成分である． 

 

    (5) 

 

 

図-3 局所座標系 s-t-n 

 

これらの関係から式(1)のハイブリッド型仮想仕事式を

離散化形式に書き下し，仮想変位 が任意であることか

ら最終的に離散化方程式が得られ，これを解いている．こ

こでは紙面の都合で離散化過程以下を略した．詳しくは

文献[5][6]を参照されたい． 

3． 弾性解析による変位の精度検証 

ここでは作成した３次元四面体要素HPMプログラムの

検証解析として要素分割を次第に細かくした場合の精度

向上の傾向を検討する．解析対象はコンクリートの引張

強度試験に用いられる３点曲げの梁（100×100×400ｍｍ）

として，92要素の粗いメッシュ分割，4849要素の中位のメ

ッシュ分割，39158要素の細かいメッシュ分割の３種類の

解析を行った．表-1に解析に用いた材料定数を，図-4に解

析対象と境界条件を示す． 

表-1 材料定数 
ヤング率 

(MPa) 

圧縮強度 

fc  (MPa) 

引張強度 

ft  (MPa) 

ポアソン比  

2.18×104 22.5 2.35 0.2 
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図-4 メッシュ図（レギュラーメッシュ92要素） 

 

図-5に各要素分割の解析における変形状況を示す．荷

重は梁中央上面の全節点の変位を制御して載荷している．

また，図-6に荷重変形関係を汎用の有限要素法（以降FEM

と称す）の解析結果と合わせて示す．解析の剛性（荷重変

形関係の傾き）は細かいメッシュでようやく安定してお

り，各要素分割での解析値はFEMと一致している． 

 

 

 

 

図-5 要素分割と変形状況 

 

 

図-6 荷重変形関係（分割数と変位量） 
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4． ひび割れ解析 

ひび割れの判定は図-7(a)に示すように（図は２次元要

素の場合であるが，本解析では四面体の１面に３点の評

価点を設定して解析している）要素間のペナルティバネ

の応力値σnがひび割れ強度ftを超えた場合にひび割れた

と判断してバネを削除する．それ以降はひび割れ幅δnと

応力σnの関係を図-7(c)の曲線として表し，この曲線の下

側の面積が破壊エネルギーGfとなるように応力を解放す

る．曲線はHordijkの３次曲線[7]を用いる． 

 

   
(a)直交応力(σn) と,   (b) σnがひび割れ強度𝑓𝑡に 

ひび割れ開口変位(δn)   達したときにペナルティは 

消去する 

 
(c) ひび割れ幅とひび割れ解放応力の関係[5] 
 

図-7 引張破壊エネルギーとひび割れ解放応力 

 

解析対象は図-8の３点曲げ供試体の梁中央に下端から

30mmまでノッチが入っている試験体とする．材料定数を

表-2に示す．ランダムメッシュ（4826要素）におけるひび

割れ解析の荷重変形関係を実験結果[5]と合わせて図-9に

示す．実験結果よりやや最大荷重が大きいが，ピーク前か

ら順にひび割れが進展していく過程やひび割れ後の曲線

の形状は試験結果と同じ傾向を示している．実験結果の

Gfを求める際のひび割れ開口変位（CMOD）の範囲が大き

く，破壊エネルギーGf =0.2は大きめに求められているた

め，CMOD=1.5mmまでのGf =0.17を用いるなどで実験値と

近づけることが可能であると考えられる． 
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図-8 解析モデル図（ランダムメッシュ,4826要素） 

表-2 材料定数 
ヤング率 

(MPa) 

圧縮強度 

fc  (MPa) 

引張強度 

ft  (MPa) 

ポアソン比  破壊ｴﾈﾙｷﾞｰ 

Gf (N/mm) 

2.61×104 36.5 3.77 0.2 0.2 

 

 

図-9 荷重ひびわれ開口変位関係の比較 

 

図-10に解析結果の変形図を示す．弾性域でノッチ部分

が開き，ひび割れが進展中に最大反力となり，次第にひび

割れ幅が拡大していく．変形倍率は50倍としている． 

 

 

(a) 弾性領域 

 

(b) 最大反力時 

 

(c) 最終(CMOD=0.5mm付近) 

図-10 変形性状（4826要素） 

 

5． まとめ 

既往の２次元HPM解析プログラムを拡張し，四面体要

素を用いて３次元解析を可能にした．また，四面体要素間

のペナルティ層にひび割れ破壊を定義し，ひび割れ後は

破壊エネルギーを考慮して応力解放する機能を導入した．

このプログラムを用いて弾性およびひび割れ非線形解析

を行い以下の知見を得た． 
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(1) 弾性解析において要素分割を変化させ，変形精度

を確認した．変形精度は汎用の有限要素法の四面

体要素を用いた場合と同じ変形となり，解析コー

ドの検証ができた． 

(2) ひび割れ解析においては２次元で用いたペナルテ

ィでのひび割れと応力解放ロジックを３次元のペ

ナルティ層でのひび割れと応力解放に適用できる

ことを確認した． 
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